精英家教网 > 初中数学 > 题目详情
9.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是(  )
A.12B.14C.16D.18

分析 根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可.

解答 解:∵∠D=90°,CD=6,AD=8,
∴AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=10,
∵∠ACD=2∠B,∠ACD=∠B+∠CAB,
∴∠B=∠CAB,
∴BC=AC=10,
∴BD=BC+CD=16,
故选:C.

点评 本题考查的是勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.解不等式组:$\left\{\begin{array}{l}{x-2(x-1)≤1}\\{\frac{1+x}{3}<x-1}\end{array}\right.$的解集是x>2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知关于x,y的方程组$\left\{\begin{array}{l}{x+y=2a+7}\\{x-2y=4a-3}\end{array}\right.$的解为正数,求非负整数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,四边形ABCD是正方形,M是边AB上一点,AM=2cm,动点P从点B出发,以每秒acm的速度沿BC-CD-DA运动到点A停止,△AMP的面积y(cm2)与动点P的运动时间x(秒)的关系如图2(部分)所示.
(1)结合图象写出当点P在BC上运动时y与x的函数关系式y=x;(不必写出自变量的取值范围)
(2)求动点P的运动速度及正方形的边长;
(3)补全整个过程中y(cm2)与x(秒)之间的函数图象;
(4)根据(3)中画出的完整图象再赋予一个实际背景.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若关于x,y的二元一次方程组$\left\{\begin{array}{l}{2x+y=-3k+1}\\{x+2y=2}\end{array}\right.$的解满足x+y>2,则k的取值范围是k<-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k-b的值是-1或-8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,直线y=-$\frac{1}{2}$x-3与坐标轴交于点A,C,经过点A,C的抛物线y=ax2+bx-3与x轴交于点B(2,0).
(1)求抛物线的解析式;
(2)点D是抛物线在第三象限图象上的动点,是否存在点D,使得△DAC的面积最大?若存在,请求这个最大值并求出点D的坐标;若不存在,请说明理由;
(3)过点D作DE⊥x轴于E,交AC于F,若AC恰好将△ADE的面积分成1:4两部分,请求出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,边长为4的正方形AOCB的顶点A、C分别在y轴和x轴上,E为边AB上的一点且AE=3,反比例函数y=$\frac{m}{x}$(x>0)的图象过点E.
(1)求反比例函数的解析式;
(2)反比例函数y=$\frac{m}{x}$(x>0)的图象与线段BC交于点D,且与过点D的直线y=kx+b相切,直线y=kx+b与线段AB相交于点F,求点F的坐标;
(3)连接OF、OE,试问在直线y=kx+b是否存在一点G,使S△OCG=3S△OFE,若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米,50×2米,100米中随机抽一项,恰好抽中实心球和50米的概率是$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案