精英家教网 > 初中数学 > 题目详情
1.如图,已知BC∥GE,AF∥DE,∠EDQ=50°.若AQ平分∠FAC,交BC于点Q,且∠Q=15°,则∠ACB的度数为80°.

分析 先根据BC∥EG得出∠E=∠1=50°,再由AF∥DE可知∠AFG=∠E=50°;再作AM∥BC,由平行线的传递性可知AM∥EG,故∠FAM=∠AFG,再根据AM∥BC可知∠QAM=∠Q,故∠FAQ=∠FAM+∠QAM,再根据AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=80°,根据AM∥BC即可得出结论.

解答 解:∵BC∥EG,
∴∠E=∠1=50°.
∵AF∥DE,
∴∠AFG=∠E=50°;
如图,作AM∥BC,
∵BC∥EG,
∴AM∥EG,
∴∠FAM=∠AFG=50°.
∵AM∥BC,
∴∠QAM=∠Q=15°,
∴∠FAQ=∠FAM+∠QAM=65°.
∵AQ平分∠FAC,
∴∠QAC=∠FA Q=65°,
∴∠M AC=∠QAC+∠QAM=80°.
∵AM∥BC,
∴∠ACB=∠MAC=80°.
故答案为:80°.

点评 本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.把抛物线C先向左平移1个单位长度,再向上平移3个单位长度,所得新抛物线的解析式为y=-x2,则抛物线C的解析式为y=-(x-1)2-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,矩形AOBC的两条边OA,OB的长是方程x2-18x+80=0的两根,其中OA<OB,沿直线AD将矩形折叠,使点C与y轴上的点E重合.
(1)求A,B两点的坐标;
(2)求直线AD的解析式;
(3)若点P在y轴上,平面内是否存在点Q,使以A,D,P,Q为顶点的四边形为矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图甲,点P是半径为6的⊙O外一点,过点P作直线交⊙O于A、B两点,点C是⊙O上一点,连接CP、CA、CB,且PC2=PA•PB.

(1)求证:PC是⊙O的切线;
(2)若sin∠ACB=$\frac{{\sqrt{5}}}{3}$,求弦AB的长;
(3)如图乙,在(2)的条件下,点D是劣弧AB的中点,连接CD交AB于E,若$\frac{AC}{BC}=\frac{1}{3}$,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.将函数y=x2-2x-3的图象沿y轴翻折后与原图象合起来,构成一个新的函数的图象,若y=m与新图象有四个公共点,则m的取值范围为m>-4且m≠-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,点P是正方形ABCD内一点,PA=1,PD=$\sqrt{10}$,∠APB=135°,则PB的长为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.抛物线y=-5x2+20x的顶点坐标为(2,20).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,其中点B的坐标为(1,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是-1<k<$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在直径为AB的⊙O中,C,D是⊙O上的两点,∠AOD=58°,CD∥AB,则∠ABC的度数为61°.

查看答案和解析>>

同步练习册答案