分析 (1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;
(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,由相似三角形的性质,可求出圆的半径,在直角三角形AEB中根据勾股定理可求出AE的长,再由平行线分线段成比例定理即可求出EM 的长;
(3)由(2)可知圆的半径为3,过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.
解答 解:
(1)证明:连接OM.
∵AC=AB,AE平分∠BAC,
∴AE⊥BC,CE=BE=BC=4,
∵OB=OM,
∴∠OBM=∠OMB,
∵BM平分∠ABC,
∴∠OBM=∠CBM,
∴∠OMB=∠CBM,
∴OM∥BC,
又∵AE⊥BC,
∴AE⊥OM,
∴AE是⊙O的切线;
(2)设⊙O的半径为R,
∵OM∥BE,
∴△OMA∽△BEA,
∴$\frac{OM}{BE}$=$\frac{AO}{AB}$,
∵AC=AB=12,
即$\frac{R}{4}=\frac{12-R}{12}$,
解得R=3,
∴⊙O的半径为3,
∵OM∥BE,
∴AM:EM=AO:BO,
∵BE=4,AB=12,
∴AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=8$\sqrt{2}$
即$\frac{8\sqrt{2}-EM}{EM}=\frac{9}{3}$.
解得:EM=2$\sqrt{2}$;
(3)由(2)可知圆的半径为3,
过点O作OH⊥BG于点H,则BG=2BH,
∵∠OME=∠MEH=∠EHO=90°,
∴四边形OMEH是矩形,
∴HE=OM=3,
∴BH=1,
∴BG=2BH=2.
故答案为:3,2.
点评 本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,矩形的判断和性质、勾股定理的运用以及平行线的判断和性质,综合性较强,难度较大.熟记和圆有关系的性质定理和判断定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com