精英家教网 > 初中数学 > 题目详情

如图,在直线l上取一点A,顺次截取AB=BC=aCD=b

那么

AC=AB+(  )=a+(  )=(  ),

AC=(  )-CD=(  )-b=(  ),

BC=AD-(  )-(  )=(  )-(  )-(  )=(  ).

答案:略
解析:

解 AC=AB(BC)=a(a)=2a

AC=(AD)CD=(aab)b=2a

BC=AD(AB)(CD)=(aab)ab=a


提示:

线段的和差与它们长度的和差是一致的.由图上可直观地看到.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,为了确定一条经过点D且与直线AB平行的直线,小明同学在直线AB上取一点C,在直线AB外取一点E,恰好量得∠2=80°,∠D=50°,∠1=∠3,这时,小明说AB与DE平行了,他说得对吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面坐标系中有一正三角形ABC,A(-8,0)、B(8,0),直线l经过原点O及BC的中点D,另一动直线a平行于y轴,从原点出发,以每秒1个单位长度的速度沿x轴向右平移,直线a分别交线段BC、直线l于点E、F,以EF为边向左侧作等边△EFG,设△EFG与△ABC重叠部分的面积为S(平方单位),当点G落在y轴上时,a停止运动,设直线a的运动时间为t(秒).
(1)直接写出:C点坐标
 
,直线l的解析式:
 

(2)请用含t的代数式表示线段EF;
(3)求出S关于t的函数关系式及t的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)问题:如果存在一组平行线a∥b∥c,请你猜想是否可以作等边三角形ABC使其三个顶点分别在a、b、c上?
小明同学的解答如下:如图1所示,过点A作AM⊥b于M,作∠MAN=60°,且AN=AM,过点N作CN⊥AN交直线c于点C,在直线b上取点B使BM=CN,则△ABC为所求.

(1)请你参考小明的作法,在图2中作一个等腰直角三角形DEF使其三个顶点分别在a、b、c上,点D为直角顶点;
(2)若直线a、b之间的距离为1,b、c之间的距离为2,则在图2中,S△DEF=
5
5
,在图1中AC=
2
3
21
2
3
21

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l:y=-x+m(m≠0)x轴、y轴于A、B两点,点C、M分别在

线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M

旋转180°,得到△FEM,则点E在y轴上, 点F在直线l上;取线段EO中

点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:

过点F的双曲线为6ec8aac122bd4f6e,过点M且以B为顶点的抛物线为6ec8aac122bd4f6e,过点P且以M

为顶点的抛物线为6ec8aac122bd4f6e.(1) 如图,当m=6时,①直接写出点M、F的坐标,

②求6ec8aac122bd4f6e6ec8aac122bd4f6e的函数解析式;

(2)当m发生变化时, ①在6ec8aac122bd4f6e的每一支上,y随x的增大如何变化?请说明理由。

                      ②若6ec8aac122bd4f6e6ec8aac122bd4f6e中的y都随着x的增大而减小,写出x的取值范围。

6ec8aac122bd4f6e
 


查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l:y=-x+m(m≠0)x轴、y轴于A、B两点,点C、M分别在

线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M

旋转180°,得到△FEM,则点E在y轴上, 点F在直线l上;取线段EO中

点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:

过点F的双曲线为,过点M且以B为顶点的抛物线为,过点P且以M

为顶点的抛物线为.

(1) 如图10,当m=6时,①直接写出点M、F的坐标,

②求的函数解析式;

(2)当m发生变化时, ①在的每一支上,y随x的增大如何变化?请说明理由。

                      ②若中的y都随着x的增大而减小,写出x的取值范围。

查看答案和解析>>

同步练习册答案