精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在四边形ABCD中,已知E,F,G,H分别是AB,BC,CD,DA的中点,试判断四边形EFGH的形状,并说明理由.
分析:连接BD.根据中位线定理,EH平行且等于
1
2
BD,FG平行且等于
1
2
BD,所以EH平行且等于FG,所以四边形EFGH是平行四边形.
解答:精英家教网证明:连接BD.
∵E,F,G,H分别是AB,BC,CD,DA的中点.
∴EH平行且等于
1
2
BD,FG平行且等于
1
2
BD,
∴EH平行且等于FG,
∴四边形EFGH是平行四边形.
点评:本题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为证明线段相等和平行提供了依据.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图所示,在四边形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=90°,求∠DAB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为
110
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在四边形ABCD中,∠BAD=90°,∠B=75°,∠ADC=135°,AB=AD=
2
,E为BC中点,则AE+DE长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在四边形ABCD中,∠A=90°,AB=9,BC=20,CD=25,AD=12,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案