精英家教网 > 初中数学 > 题目详情
9.已知:一次越野赛中,当小明跑了1600米时,小强跑了1400米.小明,小强此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示.
(1)最后谁先到达终点?
(2)求这次越野跑的全程为多少米?

分析 (1)根据函数图象可以看出谁先到达终点;
(2)根据函数图象可以列出相应的二元一次方程组,从而可以解答本题.

解答 解:(1)由图象可知,小强先到达终点;
(2)设小明从1600处到终点的速度为a米/秒,小强从1400米处到终点的速度为b米/秒,
$\left\{\begin{array}{l}{1600+300a=1400+200b}\\{200a=100b}\end{array}\right.$
解得,$\left\{\begin{array}{l}{a=2}\\{b=4}\end{array}\right.$,
故这次越野跑的全程为:1600+300×2=1600+600=2200(米),
即这次越野跑的全程为2200米.

点评 本题考查一次函数的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组,利用数形结合的思想解答问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在直角坐标系中,△ABC的顶点都在网格点上(方格纸中每个小正方形边长为1),将△ABC向右平移4格,再向下平移2格.
(1)请画出平移后的△A1B1C1,并写出A,B,C三点的对应点A1,B1,C1的坐标;
(2)求△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.五边形的内角和比它的外角和多180 度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一组数据3,1,0,-1,x的平均数是1,则它们的方差是2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,将长方形ABCD沿折痕EF对折,使点C与点A重合,若∠AEB=50°,则∠AFE=65°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为6cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,矩形的四个顶点为A(1,1)、B(5,1)、C(5,2)、D(1,2),点E、F的坐标分别为(6,0)、(8,0),动点P从点E出发,以每秒2个单位长度的速度沿EO匀速运动,到达点O后立即以原来的速度沿OE返回;另一动点Q从点F出发,以每秒1个单位长度的速度沿FO匀速运动,点P、Q同时出发,两点相遇时停止运动,在点P、Q的运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQM.设运动时间为t.
(1)当线段PM经过点B时,求t的值;
(2)当点M落在线段AB上时,求t的值;
(3)设△PQM与矩形ABCD重合部分图形的面积为S,在点P由E向O运动过程中(含点O),当重合部分的图形存在时,求S与t之间的函数关系式;
(4)若点G的坐标为(4,0),线段PM与线段AB的交点为N,请写出使得△OGN为等腰三角形时所有t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.小佳同学在学习乘法公式(a+b)2=a2±2ab+b2的多种运用后,发现可以运用所学知识上数学课时,求代数式x2+4x+5的最小值?他的解答方法如下:
解:x2+4x+5=x2+4x+4+1=(x+2)2+1
∵(x+2)2≥0,
∴当x=-2时,(x+2)2的值最小,最小值是0,
∴(x+2)2+1≥1
∴当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,
∴x2+4x+5的最小值是1.
请你根据上述方法,解答下列各题
(1)知识再现:当x=3时,代数式x2-6x+12的最小值是3;
(2)知识运用:若y=-x2+2x-3,当x=取何值时,y取得最大值?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0),下列说法:
①b2-4ac=0;
②4a+2b+c<0;
③3a+c=0;
④若(-5,y1),(2,y2)是抛物线上的两点,则y1>y2
其中正确的是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案