精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,△ABC三个顶点的坐标分别为A(1,1)、B(2,2)、C(3,1).
(1)判断△ABC的形状;
(2)如果将△ABC绕着边BC旋转.求所得旋转体的体积.
分析:(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形,从而得到△ABC是等腰直角三角形;
(2)根据圆锥体积公式,AB为底边半径,BC为高线,然后列式进行计算即可得解.
解答:解:(1)∵A(1,1)、B(2,2)、C(3,1),
∴AB=
(2-1)2+(2-1)2
=
2

AC=
(3-1)2+(1-1)2
=2,
BC=
(3-2)2+(1-2)2
=
2

∵AB2+BC2=AC2=4,
∴△ABC是等腰直角三角形;

(2)△ABC绕着边BC旋转得到圆锥,AB为底边半径,BC为高线,
所以,旋转体体积=
1
3
π•AB2•BC=
1
3
π•(
2
2
2
=
2
2
3
π.
点评:本题考查了旋转的性质,坐标与图形的性质,等腰直角三角形的性质,圆锥的体积计算,根据点的坐标求出△ABC各边的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案