精英家教网 > 初中数学 > 题目详情

【题目】我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.如图,在ABC中,ABAC,点DE分别在ABAC上,设CDBE相交于点O,如果∠A是锐角,∠DCB=∠EBCA.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.

【答案】存在等对边四边形,是四边形DBCE,见解析

【解析】

CGBEG点,作BFCDCD延长线于F点,证明△BCF≌△CBG,得到BFCG,再证∠BDF=∠BEC,得到△BDF≌△CEG,故而BDCE,即四边形DBCE是等对边四边形.

解:此时存在等对边四边形,是四边形DBCE

如图,作CGBEG点,作BFCDCD延长线于F点.

∵∠DCB=∠EBCABC为公共边,

∴△BCF≌△CBG

BFCG

∵∠BDF=∠ABE+EBC+DCB,∠BEC=∠ABE+A

∴∠BDF=∠BEC

∴△BDF≌△CEG

BDCE

∴四边形DBCE是等对边四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点M02)的直线lx轴平行,且直线l分别与反比例函数yx0)和yx0)的图象分别交于点PQ

1)求P点的坐标;

2)若POQ的面积为9,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在地面上竖直安装着ABCDEF三根立柱,在同一时刻同一光源下立柱ABCD形成的影子为BGDH.

1)填空:判断此光源下形成的投影是: 投影.

2)作出立柱EF在此光源下所形成的影子.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,N为边AD上一点,连接BN.过点AAPBN于点P,连接CPM为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①PAM∽△PBC;②PMPC;③MPCB四点共圆;④ANAM.其中正确的个数为(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB=∠CAD,过点A作⊙O的切线,交CD的延长线于点E

1)判定直线CD与⊙O的位置关系,并说明你的理由;

2)若CB4CD8,①求圆的半径.②求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠A>B,分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点P,点Q,作直线PQAB于点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧交于点M,点N,作直线MNBC于点E,若CDE是等边三角形,则∠A=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ 的图象经过A(﹣10),B30),与y轴相交于点C.点P为第一象限的抛物线上的一个动点,过点P分别做BCx轴的垂线,交BC于点EF,交x轴于点MN

1)求这个二次函数的解析式;

2)求线段PE最大值,并求出线段PE最大时点P的坐标;

3)若SPMN3SPEF时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:

(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?

(2)在飞行过程中,小球从飞出到落地所用时间是多少?

(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图题:⊙O上有三个点ABC,∠BAC70°,请画出要求的角,并标注.

1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.

查看答案和解析>>

同步练习册答案