精英家教网 > 初中数学 > 题目详情
图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是( )

A.当x=3时,EC<EM
B.当y=9时,EC>EM
C.当x增大时,EC•CF的值增大
D.当y增大时,BE•DF的值不变
【答案】分析:由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图象得反比例解析式为y=;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=3,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以EC=,而EM=3;由于EC•CF=x(6-x)配方得到-2(x-3)2+18,根据二次函数的性质得当0<x<3时,EC•CF的值随x的增大而增大;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值.
解答:解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;
观察反比例函数图象得x=3,y=3,则反比例解析式为y=
当x=3时,y=3,即BC=CD=3,所以CE=BC=3,CF=CD=3,C点与M点重合,则EC=EM,所以A选项错误;
当y=9时,x=1,即BC=1,CD=9,所以EC=,而EM=3,所以B选项错误;
因为EC•CF=x(6-x)=-2(x-3)2+18,所以当0<x<3时,EC•CF的值随x的增大而增大,所以C选项错误;
因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.
故选D.
点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源:2013-2014学年安徽蚌埠六中九年级11月阶段检测数学试卷(解析版) 题型:选择题

图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是(  )

A.当x=3时,EC<EM              B.当y=9时,EC>EM

C.当x增大时,EC•CF的值增大    D.当y增大时,BE•DF的值不变

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(安徽卷)数学(解析版) 题型:选择题

图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是

A.当x=3时,EC<EM                     B.当y=9时,EC>EM

C.当x增大时,EC·CF的值增大。          D.当y增大时,BE·DF的值不变。

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(安徽卷)数学(带解析) 题型:单选题

图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是

A.当x=3时,EC<EMB.当y=9时,EC>EM
C.当x增大时,EC·CF的值增大。D.当y增大时,BE·DF的值不变。

查看答案和解析>>

同步练习册答案