分析 (1)将B点代入直线解析式得出m的值,然后得出点A及点B的坐标,利用待定系数法求出函数解析式即可.
(2)过点B作BF⊥CE于点F,交y轴于点H,则可得BH=2,HF=2,进而求出BC,从而可得证.
解答 解:(1)∵点B(-2,m)在直线y=-2x-1上,
∴m=-2×(-2)-1=3,
由题意得,二次函数的对称轴为x=2,
则可得点A的坐标为(4,0),
设二次函数解析式为:y=ax2+bx,
则可得:$\left\{\begin{array}{l}{16a+4b=0}\\{4a-2b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=\frac{1}{4}}\\{b=-1}\end{array}\right.$,
故抛物线的解析式为:y=$\frac{1}{4}$x2-x.
(2)过点B作BF⊥CE于点F,交y轴于点H,
∵点E是x=2与y=-2x-1的交点,
∴点E的坐标为(2,-5),
故可得CE=5,
根据点B的坐标可得BH=2,CF=3,HF=2,
则BC═$\sqrt{B{F}^{2}+C{F}^{2}}$5,
即可得CB=CE.
点评 此题属于二次函数综合题,涉及了待定系数法求二次函数解析式、三角形中位线的性质、点的坐标与线段长度的转化,综合性较强,解答本题注意各知识点的融会贯通.
科目:初中数学 来源: 题型:解答题
销售单价x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的销售量y(件) | … | 450 | 400 | 300 | 250 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com