精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+c经过点A(﹣4,0)C(0,﹣4),与x轴另一个交点为B.

(1)求此二次函数的解析式和顶点D的坐标;

(2)求出A、B两点之间的距离;

(3)直接写出当y>﹣4时,x的取值范围.

【答案】(1)y=x2+3x﹣4;D(﹣,﹣);(2)5;(3)x<﹣3x>0.

【解析】

(1)根据抛物线y=x2+bx+c经过点A(-4,0)和C点(0,-4),可以求得该函数的解析式,然后根据配方法即可求出该函数的顶点坐标;
(2)根据(1)中的函数解析式可以求得点B的坐标,然后根据点A的坐标,即可求得AB的长;
(3)根据题目中的函数解析式和过点C(0,-4)、二次函数的性质即可写出当y>-4时,x的取值范围.

解:(1)∵抛物线y=x2+bx+c经过点A(﹣4,0)和C点(0,﹣4),

,得

即抛物线y=x2+3x﹣4,

y=x2+3x﹣4=(x+2

∴该抛物线的顶点坐标为(﹣,﹣);

(2)令y=0,0=x2+3x﹣4,

解得,x1=﹣4,x2=1,

∴点B的坐标为(1,0),

∵点A的坐标为(﹣4,0),

AB=1﹣(﹣4)=5;

(3)y=x2+3x﹣4=(x+2,过点(0,﹣4),

∴当y>﹣4时,x的取值范围是x<﹣3x>0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:

学生最喜欢的活动项目的人数统计表

项目

学生数(名)

百分比

丢沙包

20

10%

打篮球

60

p%

跳大绳

n

40%

踢毽球

40

20%

根据图表中提供的信息,解答下列问题:

(1)m= ,n= ,p=

(2)请根据以上信息直接补全条形统计图;

(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=ax2+bx+3经过点A(3,0)和点B(4,3).

(1)求这条抛物线所对应的二次函数的表达式.

(2)直接写出该抛物线开口方向和顶点坐标.

(3)直接在所给坐标平面内画出这条抛物线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=ax2+bx+3经过点A(3,0)和点B(4,3).

(1)求这条抛物线所对应的二次函数的表达式.

(2)直接写出该抛物线开口方向和顶点坐标.

(3)直接在所给坐标平面内画出这条抛物线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为8,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.

(1)判断四边形EFGH的形状.(直接写结论,不必证明)

(2)BE=x,四边形EFGH的面积为S,请真接写出Sx的数解析式,并求出S的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EFED,连结DF,M为DF的中点,连结MA,ME.若AMME,则AE的长为(

A.5 B.2 C.2 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个几何体从前面看及从上面看的视图如图所示。这样的几何体只有一种吗?它最多要多少个小立方体?最少要多少个小立方体?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(3,0),C(1,﹣1),ACx轴于点P.

(1)ACB的度数为_____

(2)P点坐标为______

(3)以点O为位似中心,将△ABC放大为原来的2倍,请在图中画出所有符合条件的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】公园里有甲、乙两组游客正在做团体游戏,两组游客的年龄如下:(单位:岁)

甲组:13,13,14,15,15,15,15,16,17,17;

乙组:3,4,4,5,5,6,6,6,54,57.

我们很想了解一下甲、乙两组游客的年龄特征,请你运用“数据的代表”的有关知识对甲、乙两组数据进行分析,帮我们解决这个问题.

查看答案和解析>>

同步练习册答案