精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,AB=5,BC=12,若分别以点A,C为圆心的两圆相切,点D在⊙C内,点B在⊙C外,则⊙A的半径r的取值范围是   
【答案】分析:首先根据点D在⊙C内,点B在⊙C外,求得⊙C的半径是大于5而小于12;再根据勾股定理求得AC=13,
最后根据两圆的位置关系得到其数量关系.
解答:解:∵在矩形ABCD中,AB=5,BC=12,
∴AC==13,
∵点D在⊙C内,点B在⊙C外,
∴⊙C的半径R的取值范围为:5<R<12,
∴当⊙A和⊙C内切时,圆心距等于两圆半径之差,则r的取值范围是18<r<25;
当⊙A和⊙C外切时,圆心距等于两圆半径之和是13,设⊙C的半径是Rc,即Rc+r=13,
又∵5<Rc<12,
则r的取值范围是1<r<8.
所以半径r的取值范围是18<r<25或1<r<8.
点评:此题综合运用了点和圆的位置关系以及两圆的位置关系与数量关系之间的等价关系.同时注意勾股定理的运用.
特别注意两圆相切,可能内切或外切.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4,BC=7,P是BC边上与B点不重合的动点,过点P的直线交CD的延长线于R,交AD于Q(Q与D不重合),且∠RPC=45°,设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系,并求自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在矩形ABCD中,AB=8,AD=6,E为AB边上一点,连接DE,过C作CF垂直DE.
(1)求证:△CDF∽△DEA;
(2)若设CF=x,DE=y,求y与x的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AF、BE、CE、DF分别是矩形的四个角的角平分线,E、M、F、N是其交点,求证:四边形EMFN是正方形.

查看答案和解析>>

同步练习册答案