精英家教网 > 初中数学 > 题目详情
(2013•赤峰)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.
(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=3,NP=3
3
,求NQ的长.
分析:(1)连接OP,则OP⊥PQ,然后证明OP∥NQ即可;
(2)连接MP,在直角△MNP中,利用三角函数求得∠MNP的度数,即可求得∠PNQ的值,然后在直角△PNQ中利用三角函数即可求解.
解答:(1)证明:连接OP.
∵直线PQ与⊙O相切于P点,
∴OP⊥PQ,
∵OP=ON,
∴∠OPN=∠ONP,
又∵NP平分∠MNQ,
∴∠OPN=∠PNQ,
∴OP∥NQ
∴NQ⊥PQ;

(2)解:连接MP.
∵MN是直径,
∴∠MPN=90°,
∴cos∠MNP=
NP
MN
=
3
3
6
=
3
2

∴∠MNP=30°,
∴∠PNQ=30°,
∴直角△PNQ中,NQ=NP•cos30°=3
3
×
3
2
=
9
2
点评:本题考查了切线的性质以及三角函数,正确利用三角函数求得∠MNP的度数是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•赤峰)如图所示,几何体的俯视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•赤峰)如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为(

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为
4
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的双曲线解析式是
y=
1
2x
y=
1
2x

查看答案和解析>>

同步练习册答案