精英家教网 > 初中数学 > 题目详情
某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.
(1)当日产量为多少时,每日获得的利润为1750元?
(2)当日产量为多少时,可获得最大利润?最大利润是多少?
(1)∵生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R,P与x的关系式分别为R=500+30x,P=170-2x,
∴(170-2x)x-(500+30x)=1750,
解得 x1=25,x2=45(大于每日最高产量为40只,舍去).

(2)设每天所获利润为W,
由题意得,W=(170-2x)x-(500+30x)
=-2x2+140x-500
=-2(x2-70x)-500
=-2(x2-70x+352-352)-500
=-2(x2-70x+352)+2×352-500
=-2(x-35)2+1950.
当x=35时,W有最大值1950元.
答:当日产量为25只时,每日获得利润为1750元;要想获得最大利润,每天必须生产35个工艺品,最大利润为1950.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点A在抛物线y=
1
4
x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-
1
8
x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,2
3
),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的
8
15
?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,Rt△OAB的OA边在x轴上,OB边在y轴上,且OA=2,AB=
5
,将△OAB绕点O逆时针方向旋转90°后得△OCD,已知点E的坐标是(2、2)
(1)求经过D、C、E点的抛物线的解析式;
(2)点M(x、y)是抛物线上任意点,当0<x<2时,过M作x轴的垂线交直线AC于N,试探究线段MN是否存在最大值,若存在,求出最大值是多少?并求出此时M点的坐标;
(3)P为直线AC上一动点,连接OP,作PF⊥OP交直线AE于F点,是否存在点P,使△PAF是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(如005•宁波)已知抛物线y=-x-如kx+rk(k>0)交x轴于A、B两点,交y轴于点C,以AB为直径的⊙E交y轴于点y、着(如图),且y着=0,G是劣弧Ay上的动点(不与点A、y重合),直线CG交x轴于点P.
(1)求抛物线的解析式;
(如)当直线CG是⊙E的切线时,求ca左∠PC右的值;
(r)当直线CG是⊙E的割线时,作GM⊥AB,垂足为y,交P着于点M,交⊙E于另一点左,设M左=c,GM=u,求u关于c的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC是边长为4的等边三角形,AB在x轴上,点C在第一象限,AC交y轴于点D,点A的坐标为(-1,0).
(1)求B、C、D三点的坐标;
(2)抛物线y=ax2+bx+c经过B、C、D三点,求它的解析式;
(3)过点D作DEAB交经过B、C、D三点的抛物线于点E,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,五边形ABCDE为一块土地的示意图.四边形AFDE为矩形,AE=130米,ED=100米,BC截∠F交AF、FD分别于点B、C,且BF=FC=10米.
(1)现要在此土地上划出一块矩形土地NPME作为安置区,且点P在线段BC上,若设PM的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当x为何值时,安置区的面积y最大,最大面积为多少?
(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费.为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户非安置户应向政府交纳土地使用费3万元.为保护环境,建房总面积不得超过安置区面积的50%.若除非安置户交纳的土地使用费外,政府另外投入资金150万元,请问能否将这30户移民农户全部安置?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A?B?C?D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案