精英家教网 > 初中数学 > 题目详情
(2013•东阳市模拟)平面直角坐标中,直线OA、OB都经过第一象限(O是坐标原点),且满足∠AOB=45°,如直线OA的解析式为y=kx,现探究直线OB解析式情况.

(1)当∠BOX=30°时(如图1),求直线OB解析式;
(2)当k=2时(如图2),探究过程:OA上取一点P(1,2)作PF⊥x轴于F,交OB于E,作EH⊥OA于H,则
OH
PH
=
1
2
1
2
,根据以上探究过程,请求出直线OB解析式;
(3)设直线OB解析式为y=mx,则m=
k-1
k+1
(k>1)或
k+1
1-k
(0<k<1)
k-1
k+1
(k>1)或
k+1
1-k
(0<k<1)
(用k表示),如双曲线y=
n
x
交OA于M,交OB于N,当OM=ON时,求k的值.
分析:(1)在OB上任取一点C,作CD⊥x轴与点D,设CD=a,由勾股定理可以得出OD=
3
a,设OB的解析式为y=kx,运用待定系数法就可以求出结论;
(2)由条件和勾股定理可以求出E点的坐标就可以求出OB的解析式;
(3)分k>1时,0<k<1时,两种情况用k表示出m;分k>1时,0<k<1时,两种情况求出k的值.
解答:解:(1)在OB上任取一点C,作CD⊥x轴与点D,设CD=a,
∵∠1=30°,
∴OC=2CD=2a,
在Rt△ODC中,由勾股定理,得
OD=
3
a,
设OB的解析式为y=kx,由题意,得
a=
3
ak,
k=
3
3

∴OB的解析式为:y=
3
3
x;

(2)∵PF⊥x轴,P(1,2),
∴OF=1,PF=2,
∴由勾股定理,得
OP=
5

∴tan∠OPF=
1
2

∵EH⊥OA,
∴∠EHP=90°,
EH
PH
=
1
2

设EH=x,PH=2x,
∴PE=
5
x
∴OH=
5
-2x.
∵∠HOE=45°,
∴OH=EH=x,
∴x=
5
-2x,
OH
PH
=
1
2

∴x=
5
3

∴AE=
5
3

∴EF=
1
3

∴E(1,
1
3
).
设OB的解析式为y=k1x,由题意,得
k1=
1
3

∴OB的解析式为y=
1
3
x;

(3)k>1时,同上可得m=
k-1
k+1

0<k<1时,m=
k+1
1-k

k>1时,设M(1,k),则N(k,1),代入y=
k-1
k+1
x
可得,k2-2k-1=0,k=
2
+1

0<k<1时,同理可得k=
2
-1

故答案为:
1
2
k-1
k+1
(k>1)或
k+1
1-k
(0<k<1).
点评:考查了一次函数综合题,涉及的知识点有:勾股定理,待定系数法,三角函数,分类思想和方程思想的运用,综合性较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东阳市模拟)分解因式:18x2-8=
2(3x+2)(3x-2)
2(3x+2)(3x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东阳市模拟)如图,C、D、B的坐标分别为(1,0)(9,0)(10,0),点P(t,0)是CD上一个动点,在x轴上方作等边△OPE和△BPF,连EF,G为EF的中点.
(1)当t=
5
5
时,EF∥OB;
(2)双曲线y=
k
x
过点G,当PG=
79
2
时,则k=
10
3
或15
3
10
3
或15
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东阳市模拟)计算:(
2
-1)0+(
1
2
)-1-2cos45°-
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东阳市模拟)如图,平面直角坐标系中,点A(0,4),B(3,0),D、E在x轴上,F为平面上一点,且EF⊥x轴,直线DF与直线AB互相垂直,垂足为H,△AOB≌△DEF,设BD=h.
(1)若F坐标(7,3),则h=
0
0
,若F坐标(-10,-3),则DH=
36
5
36
5

(2)如h=
37
7
,则相对应的F点存在
4
4
个,并请求出恰好在抛物线y=-
7
12
x2+
5
12
x+4
上的点F的坐标;
(3)请求出4个值,满足以A、H、F、E为顶点的四边形是梯形.

查看答案和解析>>

同步练习册答案