精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,E是BC的中点,△DEF的面积等于2,则此正方形ABCD的面积等于


  1. A.
    6
  2. B.
    12
  3. C.
    16
  4. D.
    20
B
分析:首先由正方形的性质,得到AD∥BC,AD=BC,即可得到△AFD∽△EFB,由相似三角形对应边成比例,可得,求得DF:BF的值,则可求得△DEC的面积,问题的解.
解答:∵四边形ABCD是正方形,
∴AD∥BC,AD=BC,
∴△AFD∽△EFB,

∵E是BC的中点,
∴DF:BF=2:1,
∵S△DEF=2,
∴S△BEF=1,
∴S△DEC=S△DBE=S△DEF+S△BEF=3,
∴S正方形ABCD=4S△DEC=12.
故选B.
点评:此题考查了正方形的性质、相似三角形的判定与性质以及等高三角形面积的比等于其对应底的比等知识.解此题的关键是注意合理应用数形结合思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案