精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.
(1)求证:DF∥AO;
(2)若AC=6,AB=10,求CG的长.

【答案】
(1)证明:连接OD.

∵AB与⊙O相切与点D,又AC与⊙O相切与点,

∴AC=AD,∵OC=OD,

∴OA⊥CD,

∴CD⊥OA,

∵CF是直径,

∴∠CDF=90°,

∴DF⊥CD,

∴DF∥AO.


(2)过点作EM⊥OC于M,

∵AC=6,AB=10,

∴BC= =8,

∴AD=AC=6,

∴BD=AB﹣AD=4,

∵BD2=BFBC,

∴BF=2,

∴CF=BC﹣BF=6.OC= CF=3,

∴OA= =3

∵OC2=OEOA,

∴OE=

∵EM∥AC,

= = =

∴OM= ,EM= ,FM=OF+OM=

= = =

∴CG= EM=2.


【解析】(1)欲证明DF∥OA,只要证明OA⊥CD,DF⊥CD即可;(2)过点作EM⊥OC于M,易知 = ,只要求出EM、FM、FC即可解决问题;
【考点精析】掌握切线的性质定理是解答本题的根本,需要知道切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(40),C点的坐标为(06),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的路线循环移动.

1)写出点B的坐标;

2)当点P移动了4秒时,求出此时点P的坐标;

3)在移动第一周的过程中,当OBP的面积是8时,求出此时点P的坐标;

4)若在点P出发的同时,另外有一点Q也从原点出发,以每秒1个单位长度的速度沿着O-A-B-C-O的路线循环运动,请直接写出点P和点Q在第2020次相遇时的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC的顶点均在边长为1的小正方形网络中的格点上,如图,建立平面直角坐标系,点Bx轴上.

(1)在图中画出△ABC关于x轴对称的△A’B’C’,连接AA’,求证:△AA’C≌△A’AC’;

2)请在y轴上画点P,使得PB+PC最短.(保留作图痕迹,不写画法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为(

A. 12B. 10C. 7.5D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCDABE与∠CDE的角平分线相交于点F,若∠F=125°,则∠E的度数为( )

A. 110° B. 120° C. 115° D. 105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?

遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值:

(1)(x﹣1)(x+1)=

(2)(x﹣1)(x2+x+1)=

(3)(x﹣1)(x3+x2+x+1)=

由此我们可以得到(x﹣1)(x99+x98+…+x+1)=

请你利用上面的结论,完成下面两题的计算:

(1)299+298+…+2+1;

(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学新建了一栋7层的教学大楼,每层楼有8间教室,进出这栋大楼共有八道门,其中四道正门大小相同,四道侧门大小也相同.安全检查中,对八道门进行了测试:当同时开启一道正门和两道侧门时,2分内可以通过560名学生;当同时开启一道正门和一道侧门时,4分内可以通过800名学生.

1)平均每分内一道正门和一道侧门分别可以通过多少名学生?

2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低30%.安全检查规定:在紧急情况下全大楼的学生应在5分内通过这八道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问建造的这八道门是否符合安全规定?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个角的两边与另一个角的两边分别平行,那么这两个角的大小有什么数量关系?请说明理由。(要求:画出图形,并写出已知,求证,证明过程)。

查看答案和解析>>

同步练习册答案