如图,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,连接DE、CE,将△DCE绕点C顺时针旋转90°,得△BCF,连接EF.判断EF与CE的数量关系,并证明你的结论;
(3)在(2)的条件下,当CE=2BE,∠BEC=135°时,求cos∠BFE的值.
(1)证明见解析(2)EF=CE. 证明见解析(3)
【解析】(1)证明:作AP⊥DC于点P.
∵AB∥CD,∠ABC=90°,
∴四边形APCB是矩形,………………………………1分
∴PC=AB=2,AP=BC=4.
在Rt△ADP中,tan∠ADC= 即=2,
∴DP=2,
∴DC=DP+PC=4=BC.…………………………3分
(2)EF=CE.………………………4分
证明如下:
由△DCE绕点C顺时针旋转90°得△BCF,
∴CF=CE,∠ECF=90°,
∴EF=. …………………………6分
(3)由(2)得∠CEF=45°.
∵∠BEC=135°,
∴∠BEF=90°. ………………………………7分
设BE=a,则CE=2a,由EF=CE,则EF=
在Rt△BEF中,由勾股定理得:BF=3a,
∴COS∠BFE=. ……………………10分
(1)如图,过A作AP⊥DC于点P,由AB∥CD可以得到∠ABC=90°,然后得到四边形APCB是矩形,接着利用已知条件可以求出PC=AB=2,AP=BC=4,又在Rt△ADP中,根据tan∠ADC=可以求出DP=2,接着得到DC=4,由此即可解决问题;
(2)EF=CE.由△DCE绕点C顺时针旋转90°得△BCF,根据旋转的性质得到CF=CE,∠ECF=90°,然后利用勾股定理即可求出EF;
(3)由(2)得∠CEF=45°,而∠BEC=135°,由此得到∠BEF=90°.设BE=a,则CE=2a,由EF=CE,则EF=2a.在Rt△BEF中,由勾股定理得:BF=3a,然后根据余弦的定义即可求解.
科目:初中数学 来源: 题型:
A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com