精英家教网 > 初中数学 > 题目详情
17.(1)问题发现:
如图1,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点.
填空:①四边形AFMG的形状是平行四边形;
         ②△DFM和△MGE之间的关系是△DFM≌△MGE.
(2)拓展探究:
如图2,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°,点F、M、G分别为AB、BC、AC边的中点,试判断△DFM和⊥MGE之间的关系,并加以说明.
(3)问题解决:
在(2)的条件下,若AD=5,AB=6,△DFM的面积为32,直接写出△MGE的面积.

分析 (1)①依据三角形的中位线的性质证明FM∥AC,MG∥AB,从而可知四边形AFMG的形状;
②先依据直角三角形斜边上中线的性质和平行四边形的性质证明DF=MG、FM=EG,然后依据等腰三角形三线合一的性质和平行线的性质证明∠DFM=∠EGM,依据SAS可证明两个三角形全等;
(2)先证明∠DFM=∠MGE,然后再证明∠BAD=∠AEG,依据锐角三角函数的定义可得到比例式,最后依据对应边成比例且夹角相等的两三角形相似可证明△DFM∽△MGE;
(3)先依据勾股定理求得DF=4.然后可求得△DFM与△MGE的相似比,然后依据相似三角形的面积比等于相似比的平方求解即可.

解答 解:(1)①∵BF=AF,BM=MC,
∴FM∥AC,同理MG∥AB,
∴四边形AFMG是平行四边形,
故答案为:平行四边形;
②∵∠BDA=90°,DF是AB边上的中线,
∴DF=AF.
∵四边形AFMG是平行四边形,
∴MG=AF,∠AFM=∠AGM.
∴DF=MG,∠BFM=∠MGC.
∵∠AEC=90°,EG是AC边上的中线,
∴GE=AG.
∵四边形AFMG是平行四边形,
∴AG=FM.
∴GE=FM.
∵DA=DB,F为AB的中点,
∴∠DFB=90°.
同理:∠EGC=90°.
∴∠DFB+∠BFM=∠EGC+∠MGC,即∠DFM=∠EGM.
在△DFM和△MGE中,$\left\{\begin{array}{l}{DF=MG}&{\;}\\{∠DFM=∠EGM}&{\;}\\{FM=EG}&{\;}\end{array}\right.$,
∴△DFM≌△MGE(SAS);
故答案为:△DFM≌△MGE.

(2)△DFM∽△MGE,理由如下:
∵△ADB和△ACE都是等腰三角形,且F、G为AB、AC的中点,
∴∠DFB=∠EGC=90°.
∵点F、M、G分别为AB、BC、AC边的中点,
∴FM∥AC,MG∥AB,FM=$\frac{1}{2}$AC=AG    MG=$\frac{1}{2}$AB=AF.
∴∠BFM=∠BAC=∠MGC.
∴∠BFM+90°=∠MGC+90°,
即∠DFM=∠MGE.
∵∠BAD+∠CAE=90°,∠CAE+∠AEG=90°,
∴∠BAD=∠AEG.
∴tan∠BAD=tan∠AEG.
∴$\frac{DF}{AF}=\frac{AG}{GE}$,即$\frac{DF}{MG}=\frac{FM}{GE}$,
又∵∠DFM=∠MGE,
∴△DFM∽△MGE.

(3)∵AD=5,AB=6,
∴AF=3,MG=3,MG=AF=3.
∴在Rt△ADF中,DF=$\sqrt{A{D}^{2}-A{F}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4.
∵由①知△DFM∽△MGE,且△DFM的面积为32,
∴$\frac{{S}_{△MGE}}{{S}_{△DFM}}$=($\frac{MG}{DF}$)2=($\frac{3}{4}$)2=$\frac{9}{16}$.
∴S△MGE=32×$\frac{9}{16}$=18.

点评 本题是四边形综合题目,主要考查的是三角形、四边形的综合应用,解答本题主要应用了三角形的中位线定理、平行四边形的性质和判定、全等三角形的性质和判定、相似三角形的性质和判定、勾股定理的应用,找出△DFM与△MGE全等或相似的条件是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t/天1361036
日销售量m/件9490847624
未来40天内,前20天每天的价格y1 (元/件)与时间t(天)的函数关系式为y1=0.25t+25(1≤t≤20且t为整数),后20天每天的价格y2 (元/件)与时间t(天)的函数关系式y2=-0.5+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的$\frac{2}{5}$,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在⊙O中,若∠BAC=43°,则∠BOC=86°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=6m.
(1)求∠CAE的度数;
(2)求这棵大树折断前的高度?
(结果精确到个位,参考数据:$\sqrt{2}$=1.4,$\sqrt{3}$=1.7,$\sqrt{6}$=2.4).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.据龙华区发展和财政局公布,2016 年1-12月龙华区一般公共预算支出约260 亿元,数据260 亿用科学记数法表示为(  )
A.2.6×1010B.0.26×1011C.26×109D.2.6×109

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的弦,⊙O的半径OC⊥AB于点D,若AB=6cm,OD=4cm,则⊙O的半径为5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.为了解某校九年级学生体能情况,随机抽查了其中35名学生,测试1分钟仰卧起坐的次数,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在40~45的频率是$\frac{4}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在四边形ABCD中,AC与BD相交于点O,AC=BD,E、F分别是AB、CD的中点,连结EF,分别交AC、BD于点M、N,判断△OMN的形状.

查看答案和解析>>

同步练习册答案