精英家教网 > 初中数学 > 题目详情
如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在A精英家教网C上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.
分析:(1)根据:两组对边分别平行的四边形是平行四边形,证明AG∥CE,AE∥CG即可;
(2)解法1:在Rt△AEF中,运用勾股定理可将EF的长求出;
解法2,通过△AEF∽△ACB,可将线段EF的长求出.
解答:(1)证明:在矩形ABCD中,
∵AD∥BC,
∴∠DAC=∠BCA.
由题意,得∠GAH=
1
2
∠DAC,∠ECF=
1
2
∠BCA.
∴∠GAH=∠ECF,
∴AG∥CE.
又∵AE∥CG,
∴四边形AECG是平行四边形.

(2)解法1:在Rt△ABC中,
∵AB=4,BC=3,
∴AC=5.
∵CF=CB=3,
∴AF=2.
在Rt△AEF中,
设EF=x,则AE=4-x.
根据勾股定理,得AE2=AF2+EF2
即(4-x)2=22+x2
解得x=
3
2
,即线段EF长为
3
2
cm.
解法2:
∵∠AFE=∠B=90°,∠FAE=∠BAC,
∴△AEF∽△ACB,
EF
CB
=
AE
AC

x
3
=
4-x
5

解得x=
3
2
,即线段EF长为
3
2
cm.
点评:本题考查图形的折叠变化,关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,ABCD是矩形,对角线AC、BD交于点O,要找出图中的全等三角形,最多可找出(  )对?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,ABCD是矩形,AB=4cm,AD=3cm,把矩形沿直线AC折叠.点B落在E处,连接DE.四边形ACED是什么图形?为什么?它的面积是多少?周长呢?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点.求证:四边形AECG是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,ABCD是矩形纸片,翻折∠B、∠D使BC边、AD边恰好落在AC上.设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点.
(1)请根据题意,利用尺规作图作出点F、H及折痕CE、AG;
(2)顺次连接G、F、E、H,试确定四边形GFEH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•郑州模拟)如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点.
(1)求证:四边形AECG是平行四边形:
(2)若AB=8cm,BC=6cm,求线段EF的长.

查看答案和解析>>

同步练习册答案