精英家教网 > 初中数学 > 题目详情
某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
方案2:租凭机器自己加工,所需费用y2(包括租凭机器的费用和生产包装盒的费用)
与包装盒数满足如图的函数关系。

根据图象回答下列问题:
(1)方案1中每个包装盒的价格是多少元?
(2)方案2中租凭机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1,y2,与x的函数表达式
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由。
(1)5;(2)20000,2.5;(3)y1=5x,y2=2.5x+20000;(4)当x=8000时,两种方案同样省钱;当x<8000时,选择方案一;当x>8000时,选择方案二.

试题分析:(1)根据图象1可知100个盒子共花费500元,据此可以求出盒子的单价;
(2)根据图2可以知道租赁机器花费20000元,根据图象所经过的点的坐标求出盒子的单价即可;
(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;
(4)求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.
试题解析:(1)500÷100=5,
∴方案一的盒子单价为5元;
(2)根据函数的图象可以知道租赁机器的费用为20000元,
盒子的单价为(30000-20000)÷4000=2.5,
故盒子的单价为2.5元;
(3)设图象一的函数解析式为:y1=k1x,
由图象知函数经过点(100,500),
∴500=100k1
解得k1=5,
∴函数的解析式为y1=5x;
设图象二的函数关系式为y2=k2x+b
由图象知道函数的图象经过点(0,20000)和(4000,30000)

解得:

∴函数的解析式为y2=2.5x+20000;
(4)令5x=2.5x+20000,
解得x=8000,
∴当x=8000时,两种方案同样省钱;
当x<8000时,选择方案一;
当x>8000时,选择方案二.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m的取值范围是(  )
A.m>0B.m<0C.m>2D.m<2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:
 
甲型收割机的租金
乙型收割机的租金
A地
  1800元/台
  1600元/台
B地
  1600元/台
  1200元/台
(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.
(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线,求:
(1)直线与轴,轴的交点坐标;
(2)若点(a,1)在图象上,则a值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个正比例函数的图象经过点(4,-2),它的表达式为  (    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将直线y=2x-4向上平移5个单位后,所得直线的解析式是                 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在同一平面直角坐标系中作出相应的两个一次函数的图像,则不等式组的解为           .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

给出下列命题及函数的图象
①如果,那么
②如果,那么
③如果,那么
④如果时,那么.
则(     )
A.正确的命题是①④B.错误的命题是②③④
C.正确的命题是①②D.错误的命题只有③

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形中,表示一次函数=+与正比例函数y =为常数,且≠0)的图象的是(   )

查看答案和解析>>

同步练习册答案