精英家教网 > 初中数学 > 题目详情
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF.
(1)请在图中找出一对全等三角形,并加以证明.
(2)判断四边形ABDF是怎样的四边形,并说明理由.
(3)若∠ABE=40°,求∠CFE的度数.
分析:(1)根据已知条件可以判定△ABC、△DCE均为等边三角形,由等边三角形的三个内角相等、三条边相等,利用全等三角形的判定定理SAS可以证得结论;
(2)四边形ABDF是平行四边形;利用(1)中的三个等边三角形△ABC、△AEF、△DCE可以推知同位角∠CDE=∠ABC,内错角∠CDE=∠EFA.所以利用平行的线的判定定理可以证得四边形ABDF的对边相互平行;
(3)利用全等三角形的性质以及等边三角形的性质得出即可.
解答:(1)证明:∵△ABC是等边三角形,
∴AC=BC=AB,∠ACB=60°;
又∵CD=CE,
∴△EDC是等边三角形,
∴DE=CD=CE,∠DCE=∠EDC=60°,
∵EF=AE,
∴EF+DE=AE+CE,
∴FD=AC=BC,
在△BCE和△FDC中,
BC=FD
∠BCE=∠CDF
CE=CD

∴△BCE≌△FDC(SAS);

(2)解:四边形ABDF是平行四边形;
理由如下:
∵由(1)知△ABC、△AEF、△DCE均为等边三角形,
∴∠CDE=∠ABC=∠EFA=60°,
∴AB∥FD,BD∥AF,
∴四边形ABDF是平行四边形;

(3)解:∵△BCE≌△FDC,
∴∠EBC=∠CFD,
∵∠ABC=60°,∠ABE=40°,
∴∠CBE=∠CFE=20°.
点评:本题考查了全等三角形的判定与性质、等边三角形的性质以及平行四边形的判定.平行四边形的判定定理:①对边平行且相等的四边形是平行四边形;②两组对边相互平行的四边形是平行四边形;③对角线互相平分的四边形是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案