精英家教网 > 初中数学 > 题目详情

如图1,直线l过正方形ABCD的顶点B,A、C两顶点在直线l同侧,过点A、C分别作AE⊥直线l、CF⊥直线l,垂足分别为E、F.
(1)求证:EF=AE+CF;
证明:∵四边形ABCD是正方形
∴AB=BC,∠ABC=90°
∵AE⊥直线l、CF⊥直线l.
∴∠AEB=∠BFC=90°
∴∠EAB+∠ABE=90°,
又∵∠ABE+∠CBF=180°-∠ABC=180°-90°=90°
∴______(同角的余角相等)
在△AEB与△BFC中
∵(______)
∴△AEB≌△BFC(______)
∴______(______)
∵EF=BF+EB
∴EF=AE+CF(等量代换)
(2)当A、C两顶点在直线l的两侧时(如图2),其它条件不变,那么EF、AE、CF满足什么数量关系?并证明你所得到的结论.

(1)证明:∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°.
∵AE⊥直线l、CF⊥直线l,
∴∠AEB=∠BFC=90°,
∴∠EAB+∠ABE=90°,
∵∠ABE+∠CBF=180°-∠ABC=180°-90°=90°,
∴∠EAB=∠CBF(同角的余角相等).
在△AEB与△BFC中

∴△AEB≌△BFC(AAS),
∴AE=BF,EB=FC (全等三角形的对应边相等).
∵EF=BF+EB,
∴EF=AE+CF(等量代换).
故答案为:∠EAB=∠CBF,,AAS,AE=BF,EB=FC,全等三角形的对应边相等.
(2)解:结论:EF=AE-CF
理由:∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°.
∵AE⊥直线l、CF⊥直线l,
∴∠AEB=∠BFC=90°.
∵∠ABE+∠CBF=90°
∠ABE+∠BAE=90°,
∴∠BAE=∠CBF(同角的余角相等).
在△AEB与△BFC中

∴△AEB≌△BFC(AAS),
∴AE=BF,BE=CF (全等三角形的对应边相等).
∵EF=BF-BE,
∴EF=AE-CF(等量代换).
分析:(1)根据正方形的性质就可以得出AB=BC,∠ABC=90°,再根据余角的性质就可以得出∠EAB=∠CBF,从而根据AAS可以证明△AEB≌△BFC,得出AE=BF,EB=FC就可以得出结论;
(2)根据正方形的性质及条件证明△AEB≌△BFC就可以得出AE=BF,BE=CF,从而可以得出结论.
点评:本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,余角的性质的运用,垂直的性质的运用,解答本题是证明三角形全等利用性质解题是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•深圳)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m为何值时,△OAB面积最大?最大值是多少?
(2)如图2,在(1)的条件下,函数y=
k
x
(k>0)
的图象与直线AB相交于C、D两点,若S△OCA=
1
8
S△OCD
,求k的值.
(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m为何值时,△OAB面积最大?最大值是多少?
(2)如图2,在(1)的条件下,函数数学公式的图象与直线AB相交于C、D两点,若数学公式,求k的值.
(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0)。

(1)m为何值时,△OAB面积最大?最大值是多少?

(2)如图2,在(1)的条件下,函数的图像与直线AB相交于C、D两点,若,求k的值。

(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10)。

查看答案和解析>>

科目:初中数学 来源:2013年广东省深圳市中考数学试卷(解析版) 题型:解答题

如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m为何值时,△OAB面积最大?最大值是多少?
(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.
(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(广东深圳卷)数学(解析版) 题型:解答题

如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0)。

(1)m为何值时,△OAB面积最大?最大值是多少?

(2)如图2,在(1)的条件下,函数的图像与直线AB相交于C、D两点,若,求k的值。

(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10)。

 

查看答案和解析>>

同步练习册答案