【题目】探究:如图①,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC,求证:BC⊥AD.
应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC、BE.若∠MAN=150°,则∠CBE的大小为______度.
【答案】探究:证明见解析;应用:150.
【解析】
探究:根据角平分线的定义和平行线的性质得出∠PCA=∠PAC,根据等角对等边得出PC=PA,再得出PC=PB,利用三角形的内角和证明即可;
应用:根据探究中的证明得出∠BAC+∠BAE+∠CBA+∠ABE=180°,再由角平分线得出∠BAC+∠BAE=75°,最后得出答案即可.
解:探究:∵PC∥MN,
∴∠PCA=∠MAC.
∵AD为∠MAB的平分线,
∴∠MAC=∠PAC.
∴∠PCA=∠PAC,
∴PC=PA.
∵PA=PB,
∴PC=PB,
∴∠B=∠BCP.
∵∠B+∠BCP+∠PCA+∠PAC=180°,
∴∠BCA=90°,
∴BC⊥AD;
应用:∵∠MAB的平分线AD,∠NAB的平分线AF,∠MAN=150°,
∴∠BAC+∠BAE=75°,
由探究得:∠BAC+∠BAE+∠CBA+∠ABE=180°,
∴∠CBE=∠CBA+∠ABE=180°﹣75°=105°
故答案为:105.
科目:初中数学 来源: 题型:
【题目】小邱同学根据学习函数的经验,研究函数y=的图象与性质.通过分析,该函数y与自变量x的几组对应值如下表,并画出了部分函数图象如图所示.
x | 1 |
|
|
| 3 | 4 | 5 | 6 | … |
y | ﹣1 | ﹣2 | ﹣3.4 | ﹣7.5 | 2.4 | 1.4 | 1 | 0.8 | … |
(1)函数y=的自变量x的取值范围是 ;
(2)在图中补全当1≤x<2的函数图象;
(3)观察图象,写出该函数的一条性质: ;
(4)若关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.
(1)用画树状图或列表法求乙获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则OA2﹣AB2=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=7,BC=4,∠ABC=45°,射线CD⊥AB于D,点P为射线CD上一动点,以PD为直径的⊙O交PA、PB分别为E、F,设CP=x.
(1)求sin∠ACD的值.
(2)在点P的整个运动过程中:
①当⊙O与射线CA相切时,求出所有满足条件时x的值;
②当x为何值时,四边形DEPF为矩形,并求出矩形DEPF的面积.
(3)如果将△ADC绕点D顺时针旋转150°,得△A′DC′,若点A′和点C′有且只有一个点在圆内,则x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2011山东济南,27,9分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题.
(1)在这次问卷调查中,共抽查了_________名同学;
(2)补全条形统计图;
(3)估计该校名同学中喜爱足球活动的人数;
(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线交轴于点,交轴于点,,点的坐标是.
(1)如图1,求直线的解析式;
(2)如图2,点在第一象限内,连接,过点作交延长线于点,且,过点作轴于点,连接,设点的横坐标为,的而积为S,求S与的函数关系式(不要求写出自变量的取值范围);
(3)如图3,在(2)的条件下,过点作轴,连接、,若,时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2-2ab+b2+(b-4)2=0,点C为线段AB上一点,连接OC.
(1)直接写出a=____,b=_____;
(2)如图1,P为OC上一点,连接PA,PB.若PA=B0,∠BPC=30°.求点P的纵坐标;
(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com