精英家教网 > 初中数学 > 题目详情

如图所示,在直线MN两旁各有一点A、B,且A、B到MN的距离不等,请你在MN上求作一点P,使PA-PB最大,并说明理由.

答案:
解析:

  作法:(1)作点B关于直线MN的对称点B'.

  (2)连结AB'并延长交MN于点P,则点P即为所求.

  理由:在MN上另任取一点P',连结P'A、BP'、PB(如图所示)

  ∵B、B'关于MN对称,P、P'在MN上

  

  在△AB'P'中,

  

  最大


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3c精英家教网m的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在一笔直的公路MN的同一旁有两个新开发区A,B,已知AB=10千米精英家教网,直线AB与公路MN的夹角∠AON=30°,新开发区B到公路MN的距离BC=3千米.
(1)新开发区A到公路MN的距离为
 

(2)现要在MN上某点P处向新开发区A,B修两条公路PA,PB,使点P到新开发区A,B的距离之和最短.此时PA+PB=
 
(千米).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点精英家教网C.
(1)求点C的坐标;
(2)求过A,B,C三点的抛物线的解析式;
(3)在(2)的条件下,若在抛物线上有一点D,使四边形BOCD为直角梯形,求直线BD的解析式;
(4)设点M是抛物线上任意一点,过点M作MN⊥y轴,交y轴于点N.若在线段AB上有且只有一点P,使∠MPN为直角,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,连接BE,CD,M,N分别为BE,CD的中点,连接AM,AN,MN.
(1)求证:BE=CD;
(2)求证:△AMN是等腰三角形.

查看答案和解析>>

同步练习册答案