【题目】如图,∠1+∠2=180,∠A=∠C,DA平分∠BDF。
(1)求证:AE∥FC.
(2)AD与BC的位置关系如何,为什么?
(3)证明:BC平分∠DBE.
【答案】(1)证明见解析;(2)AD∥BC;(3)证明见解析;
【解析】试题分析:(1)证明∠1=∠CDB,利用同位角相等,两直线平行即可证得;
(2)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;
(3)∠EBC=∠CBD,根据平行线的性质即可证得.
试题解析:(1)平行.理由如下:
∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),
∴∠1=∠CDB,
∴AE∥FC(同位角相等两直线平行);
(2)平行.理由如下:
∵AE∥CF,
∴∠C=∠CBE(两直线平行,内错角相等),
又∵∠A=∠C,
∴∠A=∠CBE,
∴AD∥BC(同位角相等,两直线平行);
(3)平分.理由如下:
∵DA平分∠BDF,
∴∠FDA=∠ADB,
∵AE∥CF,AD∥BC,
∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,
∴∠EBC=∠CBD,
∴BC平分∠DBE.
科目:初中数学 来源: 题型:
【题目】为了从甲、乙两名同学中选拔一个参加比赛,对他们的射击水平进行了测验,两个在相同条件下各射靶10次,命中的环数如下(单位:环)
甲:7,8,6,8,6,5,9,10,7,4
乙:9,5,7,8,6,8,7,6,7,7
(1)求甲,乙,S甲2,S乙2;
(2)你认为该选拔哪名同学参加射击比赛?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;
(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB的面积,并求当△APB与△ABC面积相等时m的值;
(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;
(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x对称?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC内边长分别为a,b,c的三个正方形,则a,b,c满足的关系式是( )
A. b=a+c B. b=ac C. b2=a2+c2 D. b2=a2c2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是( )
A.100(1+x)
B.100(1+x)2
C.100(1+x2)
D.100(1+2x)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一根长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,设其中一段铁丝长为4x cm,两个正方形的面积和为y cm2
(1)求y与x的函数关系式;
(2)要使这两个正方形面积之和为17cm2,那么这根铁丝剪成两段后的长度分别是多少?
(3)要使这两个正方形面积之和最小,则这根铁丝剪成两段后的长度各是多少?这两个正方形面积之和最小为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com