精英家教网 > 初中数学 > 题目详情
12、在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点正方形.如图,菱形ABCD的四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是
48
个;若菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),则菱形AnBnCnDn能覆盖的单位格点正方形的个数为
4n2-4n
(用含有n的式子表示).
分析:首先菱形ABCD能覆盖的单位格点正方形的个数可以根据图示直接得到,在一个象限的格点正方形的个数都是4×3,然后乘以4即可求出菱形ABCD能覆盖的单位格点正方形的个数;利用这个规律可以得到菱形AnBnCnDn的能覆盖的单位格点正方形的个数.
解答:解:∵菱形ABCD的四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),
∴菱形ABCD能覆盖的单位格点正方形的个数是4×4×3=48个;
∵菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),
∴菱形AnBnCnDn能覆盖的单位格点正方形的个数为4n(n-1)=4n2-4n.
故答案为:4n2-4n.
点评:此题主要考查菱形的性质、正方形的性质、直角坐标系的点的坐标特点等知识点,首先根据具体的图形找规律,然后利用规律得到一般结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案