精英家教网 > 初中数学 > 题目详情
4.计算9+(-5)的结果为4.

分析 原式利用异号两数相加的法则计算即可得到结果.

解答 解:原式=+(9-5)=4,
故答案为:4

点评 本题考查了有理数的加法,熟练掌握加法法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在玲玲家住宅楼CD的前面新建了一个大型商场AB,当光线与地面的夹角是22°时,商场在玲玲家楼上留下高2m的影子CE;而当光线与地面的夹角是45°时,商场楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求商场AB的高度.(参考数据:sin22°≈$\frac{3}{8}$,cos22°≈$\frac{15}{16}$,tan22°≈$\frac{2}{5}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,tan∠ACB=2,将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF.点A的对应点为点D,点B的对应点为点E,点C的对应点为点F,抛物线y=ax2+bx+2的图象过点A,C,F.
(1)求抛物线所对应函数的表达式;
(2)在边DE上是否存在一点M,使得以O,D,M为顶点的三角形与△ODE相似,若存在,求出经过M点的反比例函数的表达式,若不存在,请说明理由;
(3)在x轴的上方是否存在点P,Q,使以O,F,P,Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上,若存在,请求出P,Q两点的坐标;若不能存在,请说明理由;
(4)在抛物线的对称轴上是否存在一点H,使得HA-HC的值最大,若存在,直接写出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B,C重合),过点M作MN∥y轴交抛物线于点N,若点M的横坐标为m,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值,若不存在,说明理由.
(3)在(2)的条件下,直线MN交x轴于点D,E(t,0)是x轴上一动点,F是线段ND上一点,当△BNC的面积最大时,是否存在t,使∠EFC=90°?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.现将5张完全相同的卡片分给甲3张,正面分别写上数字1,2,3;分给乙2张,正面分别写上数字4,5.两人分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字和为6的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.
(1)求证:CE=BD;
(2)若AB=4,求AF的长度;
(3)求sin∠EFC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ABC是等腰直角三角形,∠C=90°,CD⊥AB于点D,射线DE与射线DF互相垂直.
(1)如图1,DE⊥AC于点E,DF⊥BC于点F,求证:四边形CEDF是正方形.
(2)如图2,求证:四边形CEDF的面积SCEDF=$\frac{1}{2}$S△ABC
(3)如图3,△GDF的面积是否等于$\frac{1}{2}$S△ABC?如果成立,请给予证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列方程中,是一元二次方程的是(  )
A.4x2=3yB.x(x+1)=5x2-1C.$\sqrt{x}$-3=5x2-$\sqrt{6}$D.$\frac{1}{{x}^{2}}$+3x-1=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;
(1)这次抽样调查的样本容量是50,并补全条形图;
(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中C等级所对应的圆心角为72°;
(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.

查看答案和解析>>

同步练习册答案