精英家教网 > 初中数学 > 题目详情
某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.
(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为   ,其中自变量x的取值范围是   
(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?
(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.
(1)y=60x2;0≤x≤
(2)至少需要开放15个普通售票窗口。
(3)y=50x+60。

试题分析:(1)设函数的解析式为y=ax2
把点(1,60)代入解析式得:a=60,则函数解析式为:y=60x2()。
由图可知,自变量x的取值范围是0≤x≤
(2)设需要开放x个普通售票窗口,根据售出车票不少于1450,列出不等式解不等式,求最小整数解即可。
(3)求出普通窗口的函数解析式,从而求出10点时售出的票数,和无人售票窗口当x=时,y的值,然后把运用待定系数法求解析式即可。
解:(1)y=60x2;0≤x≤
(2)设需要开放x个普通售票窗口,
由题意得,80x+60×5≥1450,解得:x≥
∵x为整数,∴x=15。
∴至少需要开放15个普通售票窗口。
(3)设普通售票的函数解析式为y=kx,
把点(1,80)代入得:k=80,
∴普通售票的函数解析式为y=80x。
∵10点时是x=2,∴当x=2时,y=160。
∴上午10点普通窗口售票为160张。
由(1)得,当x=时,y=135;
又∵上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,
∴图②中的一次函数过点(,135),(2,160)。
设一次函数的解析式为:y=mx+n,
把点的坐标代入得:,解得:
∴图②中图象的后半段一次函数的表达式为y=50x+60。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系.抛物线顶点为A,且经过点C.点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QD⊥OC交BC于点D,OD所在直线与抛物线在第一象限交于点E.

(1)求抛物线的解析式;
(2)点E′是E关于y轴的对称点,点Q运动到何处时,四边形OEAE′是菱形?
(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PB∥OD?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.

(1)证明四边形ABCD是菱形,并求点D的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=x与抛物线交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数的函数值为y2.若y1>y2,求x的取值范围;
(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
⑤8a+c>0.其中正确的命题是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:
①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.
则其中正确结论的序号是
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B、C,则BC的长值为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

由示意图可见,抛物线y=x2 +px+q   ①若有两点A(a,yl)、B(b,y2)(其中a<b)在x轴下方,则抛物线必与x轴有两个交点C(x1,O)、D(x2,O)(其中xl<x2),且满足xl<a<b<x2.当A(1,- 2.005),且xl、x2均为整数时,求二次函数的表达式,

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线的开口向下,顶点坐标为(2,-3),那么该抛物线有(   )
A.最小值 -3B.最大值-3 C.最小值2D.最大值2

查看答案和解析>>

同步练习册答案