精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.

(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.

【答案】
(1)解:∵BC=DC,

∴∠CBD=∠CDB=39°,

∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,

∴∠BAD=∠BAC+∠CAD=39°+39°=78°;


(2)证明:∵EC=BC,

∴∠CEB=∠CBE,

而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,

∴∠2+∠BAE=∠1+∠CBD,

∵∠BAE=∠BDC=∠CBD,

∴∠1=∠2.


【解析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图所示,在ABC中,∠BAC=60°,AD=AEBECD交于点F且∠DFE=120°.BE的延长线上截取ET=DC,连接AT.

(1)求证:∠ADC=AET

(2)求证:AT=AC

(3)BC边上的中线APBE交于Q.求证:∠QAB=QBA.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.

(1)求圆的半径和点D的坐标;
(2)点A的坐标是 , 点B的坐标是 , sin∠ACB
(3)求经过C、A、B三点的抛物线解析式;
(4)设抛物线的顶点为F,证明直线FA与⊙D相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y= 的图象交于A,B两点,则四边形MAOB的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABD和△ACE分别是等边三角形,AB≠AC,下列结论中正确有( ).

DC=BE,⑵∠BOD=60°,⑶∠BDO=CEO,AO平分∠DOE,AO平分∠BAC

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,边上的高,则边的长为( )

A. 4 B. 14 C. 4 或14 D. 8或14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,

(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中, 厘米, 厘米,点DAB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______ 厘米/秒时,能够在某一时刻使BPDCQP全等.

查看答案和解析>>

同步练习册答案