精英家教网 > 初中数学 > 题目详情
19、(1)求下列各式中的x:
①(x-1)3=-8;
②(x+1)2=25.
(2)已知某数的平方根是a+3和2a-15,b的立方根是2,求b-a的平方根.
分析:(1)①可用直接开立方法进行解答;
②可用直接开平方法进行解答;
(2)由于某数的两个平方根应该互为相反数,由此即可列方程解出a,然后可得b值,代入所求代数式即可求解.
解答:解:(1)①(x-1)3=-8=(-2)3
∴x-1=-2
∴x=-1;
②∵(x+1)2=25=(±5)2
∴x+1=±5,
∴x=4或x=-6;

( 2)由于正数的平方根有两个,且互为相反数.
根据题意得:(a+3)+(2a-15)=0,
解得a=4;
∵b的立方根是2,
∴b=8
∴b-a=8-4=4,
4的平方根为±2,
∴b-a的平方根±2.
点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)计算:
9
-|
3
-2|-
(-5)2

(2)求下列各式中的x:
①4x2-81=0     
②64(x+1)3=27.

查看答案和解析>>

科目:初中数学 来源: 题型:

求下列各式中的x值:
(1)121x2=64
(2)3x3-24=0
(3)(5-x)2=(-7)2
(4)-25(2x-1)2=(-4)3

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算(x-y+9)(x+y-9);
(2)求下列各式中的x:x2-17=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

求下列各式中的x的值:
(1)5x2-10=0
(2)(
25
x+1)3=216

查看答案和解析>>

科目:初中数学 来源: 题型:

求下列各式中的x:
(1)4x2=9;         
(2)(2x-1)3=-8.

查看答案和解析>>

同步练习册答案