【题目】如图,将沿着过中点的直线折叠,使点落在边上的,称为第次操作,折痕到的距离记为;还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第次操作,折痕到的距离记为;按上述方法不断操作下去…,经过第次操作后得到的折痕,到的距离记为,若,则的值为( )
A.B.C.D.
【答案】B
【解析】
根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质可得∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得A A1⊥BC,得到AA1=2,求出h1=2-1=1,同理,h2=2-,h3=2-×=2-,经过第n次操作后得到的折痕Dn-1En-1到BC的距离hn=2-.
解:由折叠的性质可得:AA1⊥DE,DA=DA1,
又∵D是AB中点,
∴DA=DB,
∴DB=DA1,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2h1=2,
∴h1=2-1=1,
同理,h2=2-,h3=2-×=2-
…
∴经过第n次操作后得到的折痕Dn-1En-1到BC的距离hn=2-.
∴h2019=.
故选B.
科目:初中数学 来源: 题型:
【题目】阅读材料,解决问题:
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末位能被整除的数,本身必能被整除,反过来,末位不能被整除的数,本身也不可能被整除,例如判断992250能否被25、625整除时,可按下列步骤计算:
,为整数,能被25整除
,不为整数,不能被625整除
材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能.
(1)若这个三位数能被11整除,则 ;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数
(2)若一个六位数p的最高位数字为5,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.
(1)如果∠AOC=50°,求∠MON的度数;
(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每天早晨王老师7点准时骑自行车去学校上班,今天早晨由于走的匆忙,忘带一样重要东西。当他骑车至距学校6千米处时,原地返回,加速回到家,取完东西又以最初出发时的速度骑车去学校。如图是王老师今早出行的过程中他距学校的距离y(km)与他离家所用时间x(min)之间的函数图像.
根据图像解答下列问题:
(1)求直线AB的解析式.
(2)如果学校8:30准时上课,请问王老师能否按时到校上课?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.
(1)求证:DE为⊙O的切线;
(2)若DE=2,tanC=,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为线段上一动点(不与点、重合),在同侧分别作等边和等边,与交于点,与交于点,与交于点,连接、,以下五个结论:①;②;③;④;⑤平分.一定成立的结论有______________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.
(1)判断顶点是否在直线上,并说明理由.
(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.
(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)如图,△ABC为等腰三角形,AC=BC,以边BC为直径的半圆与边AB,AC分别交于D,E两点,过点D作DF⊥AC,垂足为点F.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)若BC=9,EF=1,求DF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com