A. | $\sqrt{3}$和30° | B. | $\sqrt{3}$和60° | C. | 3$\sqrt{3}$和30° | D. | 3$\sqrt{3}$和60° |
分析 求出方程x2-5x-6=0的解,确定出弦AB的长,过O作OC⊥AB,连接OA,OB,如图所示,利用垂径定理得到C为AB的中点,由AB的长求出AC的长,在直角三角形AOC中,利用勾股定理求出OC的长,即为圆心O到弦AB的距离;由OA=OB=AB=6,得到三角形AOB为等边三角形,可得出∠AOB=60°,即为AB所对的圆心角的度数.
解答 解:方程x2-5x-6=0因式分解得:(x-6)(x+1)=0,
解得:x=6或x=-1(舍去),
∴AB=6,
过O作OC⊥AB,连接OA,OB,如图所示,
可得C为AB的中点,即AC=BC=3,
在Rt△AOC中,OA=6,AC=3,
根据勾股定理得:OC=$\sqrt{O{A}^{2}-A{C}^{2}}$=3$\sqrt{3}$,
∵OA=OB=AB=6,
∴△OAB为等边三角形,
∴∠AOB=60°,
则圆心O到弦AB的距离以及AB所对的圆心角分别为3$\sqrt{3}$和60°.
故选D.
点评 此题考查了垂径定理,勾股定理,以及一元二次方程-因式分解法,利用了数形结合的思想,熟练掌握定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{125}$ | B. | ±$\frac{1}{125}$ | C. | ±$\frac{1}{5}$ | D. | -$\frac{1}{125}$或-$\frac{1}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com