精英家教网 > 初中数学 > 题目详情
如图,D是等腰三解形△ABC(AB=BC)的外角平分线上的一点,DC⊥BC,∠ABC=120°,若BD=2,则△ABD的面积为(  )
分析:过D作DE⊥AB于E,根据邻补角定义求出∠CBE=60°,再根据角平分线的定义求出∠CBD=30°,然后根据30°角所对的直角边等于斜边的一半求出CD,利用勾股定理列式求出BC,从而得到AB的长度,再根据角平分线上的点到角的两边的距离相等可得DE=CD,然后利用三角形的面积公式列式进行计算即可得解.
解答:解:如图,过D作DE⊥AB于E,
∵∠ABC=120°,
∴∠CBE=180°-120°=60°,
∵BD是△ABC的外角平分线,
∴∠CBD=
1
2
×60°=30°,
∴CD=
1
2
BD=
1
2
×2=1,
∵DC⊥BC,
∴BC=
BD2-CD2
=
22-12
=
3

∴AB=BC=
3

∵BD是△ABC的外角平分线,DC⊥BC,
∴DE=CD=1,
∴△ABD的面积=
1
2
×
3
×1=
3
2

故选C.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,勾股定理的应用,熟记性质并作出辅助线得到AB边上的高是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=数学公式a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos数学公式∠AOB=Rcos数学公式×120°=Rcos60°,
AM=OAsin∠AOM=Rsin数学公式∠AOB=Rsin数学公式×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=数学公式AB×OM=数学公式×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
数学公式a(h1+h2+h3)=3R2sin60°cos60°
即:数学公式×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=________
正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=________
正n边形(半径是R)内任意一点P到各边距离之和 h1+h2+…+hn=________.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,D是等腰三解形△ABC(AB=BC)的外角平分线上的一点,DC⊥BC,∠ABC=120°,若BD=2,则△ABD的面积为


  1. A.
    2
  2. B.
    3
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图所示,这是美国第20任总统加菲尔德证明勾股定理时所采用的图形,是用两个全等的直角三角形和一个等腰直角三解形拼出一个梯形。借助这个图形,你能用面积法来验证勾股定理吗?

查看答案和解析>>

同步练习册答案