精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形是矩形 ,延长线上的一点,上一点,;, = ________ .

【答案】

【解析】由矩形的性质得出∠BCD=90°,ABCD,ADBC,证出∠FEA=ECD,DAC=ACB=21°,由三角形的外角性质得出∠ACF=2FEA,设∠ECD=x,则∠ACF=2x,ACD=3x,由互余两角关系得出方程,解方程即可.

∵四边形ABCD是矩形,

∴∠BCD=90°,ABCD,ADBC,

∴∠FEA=ECD,DAC=ACB=21°,

∵∠ACF=AFC,FAE=FEA,

∴∠ACF=2FEA,

设∠ECD=x,则∠ACF=2x,

∴∠ACD=3x,

3x+21°=90°,

解得:x=23°.

故答案为:23°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人5次射击命中的环数如下:

7

9

8

6

10

7

8

9

8

8

则以下判断中正确的是(
A. = , S2=S2
B. = , S2>S2
C. = , S2<S2
D. , S2<S2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A,B是数轴上的点,且点A表示数-3,请参照图并思考,完成下列各题:

(1)将A点向右移动4个单位长度,那么终点B表示的数是 ,此时 A,B两点间的距离是 .

(2)若把数轴绕点A对折,则对折后,B落在数轴上的位置所表示的数为 .

(3)若(1)中点B以每秒2个单位长度沿数轴向左运动,A不动,多长时间后,B与点A距离为2个单位长度?试列式计算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2∠DAB=60°,EAD边的中点,点MAB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MDAN.

1)求证:四边形AMDN是平行四边形;

2)填空:AM的值为 时,四边形AMDN是矩形;AM的值为 时,四边形AMDN是菱形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:(1)7(2x–1)–3(4x–1)=4(3x+2)–1;

(2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:德国著名数学家高斯被认为是历史上最重要的数学家之一,并有"数学王子"的美誉.高斯从小就善于观察和思考.在他读小学时候就能在课堂上快速的计算出,今天我们可以将高斯的做法归纳如下:

(右边相加100+1=2+99=3+98=…..=100+1100组)

①+②:有2S=101x100 解得:

(1)请参照以上做法,回答,3+5+7+9+…..+97=

请尝试解决下列问题:

如下图,有一个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依此类推.

(2)填写下表:

层数

1

2

3

4

该层对应的点数

1

6

12

18

所有层的总点数的和

1

7

19

写出第n层所对应的点数;n≥2)

②如果某一层共96个点,求它是第几层;

③写出n层的六边形点阵的总点数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CAB上,点M、N分别是AC、BC的中点,

(1)AC=12cm,BC=10cm,求线段MN的长;

(2)若点C为线段AB上任意一点,满足AC+BC=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;

(3)若点C在线段AB的延长线上,且满足AC-BC=bcm,点M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.请用一句简洁的话描述你发现的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2 , 若y1≠y2 , 取y1、y2中的较小值记为M;若y1=y2 , 记M=y1=y2 . 下列判断: ①当x>2时,M=y2
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x=1.
其中正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案