精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=x+2与抛物线y=ax2+bx+6a≠0)相交于A)和B46),点P是线段AB上异于AB的动点,过点PPCx轴于点D,交抛物线于点C

1)求抛物线的解析式;

2)当C为抛物线顶点的时候,求的面积.

3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.

【答案】1;(23)存在,m为点P的横坐标)当m=时,

【解析】

1)把AB坐标代入二次函数解析式,求出ab,即可求得解析式;

2)根据第(1)问求出的函数解析式可得出C点的坐标,根据CP两点横坐标一样可得出P点的坐标,将△BCE的面积分成△PCE与△PCB,以PC为底,即可求出△BCE的面积.

3)设动点P的坐标为(mm+2),点C的坐标为(m),表示出PC的长度,根据,构造二次函数,然后求出二次函数的最大值,并求出此时m的值即可.

解:(1)A()B(4,6)在抛物线y=ax2+bx+6上,

解得:

∴抛物线的解析式

2)∵二次函数解析式为

∴顶点C坐标为

PCx,点P在直线y=x+2上,

∴点P的坐标为

PC=6

∵点E为直线y=x+2x轴的交点,

∴点E的坐标为

=

.

3)存在.

设动点P的坐标是,点C的坐标为

,

∴函数开口向下,有最大值

∴当时,△ABC的面积有最大值为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.

(1)求证:CE为⊙O的切线;

(2)判断四边形AOCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图

(1)所示位置放置放置,现将RtAEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.

(1)求证:AM=AN;

(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.

1)求n的值;

2)若FDE的中点,判断四边形ACFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,抛物线)与轴交于两点,点在该抛物线上(点与两点不重合),如果的三边满足,则称点为抛物线)的勾股点.

1)求证:点是抛物线的勾股点.

2)如图2,已知抛物线)与轴交于两点,点是抛物线的勾股点,求抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图像轴上方的部分沿轴翻折到轴下方,图像的其余部分保持不变,若直线与该图像有两个公共点,则的取值范围______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角三角形ABC中,点DE分别在边ACAB上,AGBC于点GAFDE于点FEAF=∠GAC.

1)求证ΔADEΔABC

2)若AD=3AB=5,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是(  )

A. 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球

B. 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数

C. 先后两次掷一枚质地均匀的硬币,两次都出现反面

D. 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9

查看答案和解析>>

同步练习册答案