精英家教网 > 初中数学 > 题目详情
17.如图,在?ABCD中,已知AC、BD相交于点O,两条对角线的和为24cm,BC长为8cm,则△AOD的周长=20cm.

分析 由在?ABCD中,两条对角线的和为24cm,BC长为8cm,根据平行四边形的性质,即可求得OA+OD与AD,继而求得答案.

解答 解:∵在?ABCD中,两条对角线的和为24cm,BC长为8cm,
∴OA+OD=$\frac{1}{2}$×24=12cm,AD=BC=8cm,
∴△AOD的周长=OA+OD+AD=20cm.
故答案为:20cm.

点评 此题考查了平行四边形的性质.注意平行四边形的对角线互相平分,对边相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点(-1,3),则b的值是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.根据要求,回答以下问题:
(1)如图1,正方形ABCD中,对角线AC、BD交于点O,点E是BO上的一点,BG垂直AE于F,交AC于点G.请你直接写出AE、BG以及OE、OG的大小关系是:AE=BG,OE=OG.
(2)如图2,菱形ABCD中,对角线AC、BD交于点O,点E是BO上的一点,BG垂直AE于F,交AC于点G,且AC=6,BD=8,请你求出AE、BG的数量关系.
(3)如图3,?ABCD中,对角线AC、BD交于点O,AC=8,BD=24,∠AOB=60°,点E是BO上的一点,OE=1,点G在对角线AC所在的直线上,当OG=3或9时,AE:BG=1:3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知抛物线y=ax2-x+c经过点Q (-2,4),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A,B两点,
(1)求抛物线的解析式;
(2)求A,B两点的坐标;
(3)设PB与y轴交于C点,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.α=40°,α的补角是β的2倍,则β=70°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,一次函数y=$\frac{1}{2}$x+2的图象与x轴交于点B,与反比例函数y=$\frac{k}{x}$(k≠0)的图象的一个交点为A(2,m).
(1)求反比例函数的表达式;
(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;
(3)请直接写出不等式$\frac{1}{2}$x+2<$\frac{k}{x}$成立的x取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在?ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC,EF与AB的延长线交于点E,与CD的延长线交于点F.
求证:四边形AECF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.将矩形ABCD的一边AB沿AE对折,使AB沿AE对折,使AB落在边AD上,点B与点F重合,求证:四边形ABEF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.化简:$\root{3}{\frac{61}{125}-1}$=-$\frac{4}{5}$,$\sqrt{\frac{9}{64}}$=$\frac{3}{8}$,$\sqrt{(-9)^{2}}$=9.

查看答案和解析>>

同步练习册答案