精英家教网 > 初中数学 > 题目详情
13.请写出一个只含字母a和b的四次3项式a4+2b+1.

分析 四次三项式即多项式中次数最高的项的次数为4,并且含有三项的多项式.

解答 解:由多项式的定义可得只含字母a和b的四次3项式:a4+2b+1.
故答案为:a4+2b+1.

点评 本题考查了多项式的定义,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.(Ⅰ)(1)问题引入
如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=90°+$\frac{1}{2}$∠α(用α表示);
(2)拓展研究
如图②,∠CBO=$\frac{1}{3}$∠ABC,∠BCO=$\frac{1}{3}$∠ACB,∠A=α,试求∠BOC的度数120°+$\frac{1}{3}$∠α(用α表示)
(3)归纳猜想
若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=$\frac{1}{n}$∠ABC,∠BCO=$\frac{1}{n}$∠ACB,∠A=α,则∠BOC=$\frac{{(n-1)•{{180}°}+∠α}}{n}$(用α表示).
(Ⅱ)类比探索
(1)特例思考
如图③,∠CBO=$\frac{1}{3}$∠DBC,∠BCO=$\frac{1}{3}$∠ECB,∠A=α,求∠BOC的度数(用α表示).
(2)一般猜想
若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=$\frac{1}{n}$∠DBC,∠BCO=$\frac{1}{n}$∠ECB,∠A=α,请猜想∠BOC=$\frac{{(n-1)•{{180}°}-∠α}}{n}$(用α表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,把一个矩形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为110°的菱形,剪口与第二次折痕所成角的度数应为(  )
A.70°或20°B.55°或45°C.55°或35°D.55°或65°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.根据指令[x,s](其中0°≤x≤180°,s≥0),机器人在平面上能完成下列动作:先原地逆时针转角度x,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向,若给机器人下了一个指令[30°,10],则机器人应移到的点的坐标是(5$\sqrt{3}$,5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知在矩形ABCD中,AB=4,BC=3,按下列要求重叠,试求出所要求的结果.
(1)如图(a),把矩形ABCD沿对角线BD折叠得△EBD、BE交CD于点F,求DF的长;
(2)如图(b),折叠矩形ABCD,使AD与对角线BD重合,求折痕DE的长.
(3)如图(c),折叠矩形ABCD,使点B与点D重合,求折痕EF的长.
(4)如图(d),若AB的长为5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知AD=AE,∠BEC=∠CDB,BD、CE相交于点O.
(1)说明BD=CE的理由;
(2)△BOE与△COD是否全等?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是(  )
A.A→O→DB.E→A→CC.A→E→DD.E→A→B

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某公司经营甲、乙两种汽车,每辆甲种汽车进价12万元,售价14.5万元,每辆乙种汽车进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种汽车共20辆,所用资金不低于195万元,不高于205万元.
(1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次进货,请你直接写出获得最大利润的进货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.分别以2cm、3cm、4cm、5cm的线段为边可构成(  )三角形.
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案