精英家教网 > 初中数学 > 题目详情
如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.
(1)相等  见解析    (2)见解析     (3)8
解:(1)相等
由旋转的性质得∠AOB=∠COF,
在△AOD和△COF中,

∴△AOD≌△COF(SAS),
∴AD=CF;
(2)①当0≤x≤4﹣4时,y=22(2﹣x)2=﹣x2+2x+2;
②当4﹣4≤x≤2时,y=22(2﹣x)2(4+x﹣42
③2≤x≤4﹣2时,y=22(4+x﹣42
④4﹣2≤x≤4时,y=(4﹣x)2
⑤x≥4时,y=0.
(3)连接OK,

∵∠COK=∠ACO=45°,
∴OK∥AC,
∴S△ACK=S△AOC=8.
(1)根据旋转的性质得到∠AOB=∠COF,然后证得△AOD≌△COF后即可证得AD=CF;
(2)分当0≤x≤4﹣4时、当4﹣4≤x≤2时,2≤x≤4﹣2时、4﹣2≤x≤4时、x≥4时五种情况列出两个变量之间的函数关系式即可;
(3)连接OK,利用内错角相等得到OK∥AC,然后得到S△ACK=S△AOC=8.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m),
(1)求二次函数的解析式并写出D点坐标;
(2)点Q是线段AB上的一动点,过点Q作QE∥AD交BD于E,连结DQ,当△DQE的面积最大时,求点Q的坐标;
(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,抛物线与x轴交于点A(-2,0)和点B,与y轴交于点C(0,),线段AC上有一动点P从点A出发,以每秒1个单位长度的速度向点C移动,线段AB上有另一个动点Q从点B出发,以每秒2个单位长度的速度向点A移动,两动点同时出发,设运动时间为t秒.
(1)求该抛物线的解析式;
(2)在整个运动过程中,是否存在某一时刻,使得以A,P,Q为顶点的三角形与△AOC相似?如果存在,请求出对应的t的值;如果不存在,请说明理由.
(3)在y轴上有两点M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,请直接写出相应的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平面直角坐标第xoy中,A点的坐标为(0,5).B、C分别是x轴、y轴上的两个动点,C从A出发,沿y轴负半轴方向以1个单位/秒的速度向点O运动,点B从O出发,沿x轴正半轴方向以1个单位/秒的速度运动.设运动时间为t秒,点D是线段OB上一点,且BD=OC.点E是第一象限内一点,且AEDB.
(1)当t=4秒时,求过E、D、B三点的抛物线解析式.
(2)当0<t<5时,(如图甲),∠ECB的大小是否随着C、B的变化而变化?如果不变,求出它的大小.
(3)求证:∠APC=45°
(4)当t>5时,(如图乙)∠APC的大小还是45°吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果将抛物线向下平移3个单位,那么所得新抛物线的表达式是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6.现有两动点P、Q分别从A、C两点同时出发,点P以每秒1个单位长的速度由点A向点D做匀速运动,点Q沿折线CB—BA向点A做匀速运动.
(1)点P将要运行路径AD的长度为     ;点Q将要运行的路径折线CB—BA的长度为        .
(2)当点Q在BA边上运动时,若点Q的速度为每秒2个单位长,设运动时间为t秒.
①求△APQ的面积S关于t的函数关系式,并求自变量t的取范围;
②求当t为何值时,S有最大值,最大值是多少?
(3)如图2,若点Q的速度为每秒a个单位长(a≤),当t =4秒时:
①此时点Q是在边CB上,还是在边BA上呢?
②△APQ是等腰三角形,请求出a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1

将C1绕点A1旋转180°得C2,交x轴于点A2
将C2绕点A2旋转180°得C3,交x轴于点A3

如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=(     ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学习了函数的知识后,数学活动小组到文具店调研一种进价为每支2元的活动笔的销售情况。调查后发现,每支定价3元,每天能卖出100支,而且每支定价每下降0.1元,其销售量将增加10支。但是物价局规定,该活动笔每支的销售利润不能超过其进价的40%。设每支定价x元,每天的销售利润为y元。
(1)求每天的销售利润为y与每支定价x之间的函数关系式;
(2)如果要实现每天75元的销售利润,那么每支定价应为多少元?
(3)当每支定价为多少元时,可以使这种笔每天的销售利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),以小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在抛物线上的概率为(  )
A.           B.            C.             D.

查看答案和解析>>

同步练习册答案