分析 分两种情况进行讨论:当∠ABE=90°时,∠EAB=∠ABC=45°;当∠BAE=90°时,作CF⊥AB于F,连接EF,分别根据等腰直角三角形的性质以及平行线的性质,进行计算即可得到△ACE的面积.
解答 解:△ACE的面积为2或2-$\sqrt{2}$.
①如图,当∠ABE=90°时,∠EAB=∠ABC=45°,
∴AE∥BC,
∴S△ACE=S△ABE,
∵菱形ABCD的周长为8,
∴AB=BE=2,
∴S△ACE=S△ABE=$\frac{1}{2}$×2×2=2;
②如图,当∠BAE=90°时,作CF⊥AB于F,连接EF,则∠EAF=∠CFA=90°,
∴AE∥CF,
∴S△ACE=S△AFE,
∵菱形ABCD的周长为8,
∴AB=AE=BC=2,
∴Rt△BCF中,BF=$\sqrt{2}$,
∴AF=2-$\sqrt{2}$,
∴S△ACE=S△AFE=$\frac{1}{2}$AE×AF=$\frac{1}{2}$×2×(2-$\sqrt{2}$)=2-$\sqrt{2}$.
点评 本题主要考查了菱形的性质以及等腰直角三角形的性质的运用,解决问题的关键是画出图形,运用分类思想以及化归思想进行求解.
科目:初中数学 来源: 题型:选择题
A. | 8.6283×104 | B. | 86.283×105 | C. | 8.6283×106 | D. | 8.6283×107 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ∠1=∠2>∠3 | B. | ∠1=∠3>∠2 | C. | ∠2>∠1=∠3 | D. | ∠3>∠1=∠2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com