精英家教网 > 初中数学 > 题目详情

二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2,其中正确的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:(1)由图象与y轴交于y轴负半轴可以确定c的符号;
(2)由对称轴x=-=1和开口向下可以得到a<0,由此可以确定b的符号;
(3)由于当x=2时,y<0,由此可以确定4a+2b+c的符号;
(4)由于(a+c)2<b2可化为(a-b+c)(a+b+c)<0,由于当x=1时,a+b+c>0,所以当x=-1时,可以确定a-b+c的符号,最后确定(a+c)2<b2是否正确.
解答:(1)∵图象与y轴交于y轴负半轴,则c<0,正确;
(2)∵对称轴x=-=1,开口向下,
∴a<0,故b>0,正确;
(3)当x=2时,y<0,即4a+2b+c>0错误;
(4)(a+c)2<b2可化为(a-b+c)(a+b+c)<0,
而当x=1时,a+b+c>0,当x=-1时,a-b+c<0,故(a+c)2<b2正确.
故选C.
点评:解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于精英家教网点C(0,
3
)
,当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c,当x=
12
时,有最大值25,而方程ax2+bx+c=0的两根α、β,满足α33=19,求a、b、c.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确结论的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是
①②③
①②③
(把正确的序号都填上).

查看答案和解析>>

同步练习册答案