精英家教网 > 初中数学 > 题目详情
(2013•湖州模拟)在平面直角坐标系xOy中,如图1,将若干个边长为 
2
的正方形并排组成矩形OABC,相邻两边OA、OC分别落在y轴的正半轴和x轴的负半轴上,将这些正方形顺时针绕点O旋转135°得到相应矩形OA′B′C′,二次函数y=ax2+bx+c(a≠0)过点O、B′、C′.
(1)如图2,当正方形个数为1时,填空:点B′坐标为
(2,0)
(2,0)
,点C′坐标为
(1,1)
(1,1)
,二次函数的关系式为
y=-x2+2x
y=-x2+2x
,此时抛物线的对称轴方程为
直线x=1
直线x=1

(2)如图3,当正方形个数为2时,求y=ax2+bx+c(a≠0)图象的对称轴;
(3)当正方形个数为2011时,求y=ax2+bx+c(a≠0)图象的对称轴;
(4)当正方形个数为n个时,请直接写出:用含n的代数式来表示y=ax2+bx+c(a≠0)图象的对称轴.
分析:(1)根据正方形的性质求出对角线的长,然后根据旋转角是135°可知点C′在x轴上,从而求出点B′、C′的坐标,再利用待定系数法求二次函数解析式,根据对称轴公式求解;
(2)先求出点B′、C′的坐标,再利用待定系数法求出a、b的关系,然后利用对称轴解析式解答;
(3)求出点B′、C′的坐标,再利用待定系数法求出a、b的关系,然后利用对称轴解析式解答;
(4)根据(2)与(3)的规律,求出点B′、C′的坐标,再利用待定系数法求出a、b的关系,然后利用对称轴解析式解答即可.
解答:解:(1)∵正方形的边长为
2

∴对角线为
2
×
2
=2,
∵旋转角为135°,
∴点B′在x轴上,
∴点B′(2,0),
根据正方形的性质,点C′(1,1),
∵抛物线y=ax2+bx+c(a≠0)过点O、B′、C′,
4a+2b+c=0
a+b+c=1
c=0

解得
a=-1
b=2

∴二次函数关系式为y=-x2+2x,
对称轴为直线x=-
2
2×(-1)
=1,
即直线x=1;
故答案为:(2,0);(1,1);y=-x2+2x;直线x=1.

(2)正方形个数为2时,B′(3,1),C′(2,2),
9a+3b+c=1
4a+2b+c=2
c=0

整理得,7a=-2b,
b
a
=-
7
2

抛物线对称轴为直线x=-
b
2a
=-
1
2
×(-
7
2
)=
7
4


(3)正方形个数为2011时,B′(2012,2010),C′(2011,2011),
20122a+2012b+c=2010
20112a+2011b+c=2011
c=0

整理得,6034a=-2b,
b
a
=-3017,
对称轴为直线x=-
b
2a
=-
1
2
×(-3017)=
3017
2


(4)正方形个数为n个时,B′(n+1,n-1),C′(n,n),
(n+1)2a+(n+1)b+c=n-1
n2a+nb+c=n
c=0

整理得,(3n+1)a=-2b,
b
a
=-
3n+1
2

对称轴为直线x=-
b
2a
=-
1
2
×(-
3n+1
2
)=
3n+1
4
点评:本题是二次函数综合题型,主要考查了正方形的性质,旋转的性质,待定系数法的思想以及待定系数法求二次函数解析式,根据规律确定出点B′、C′的坐标是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•湖州模拟)如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙O,从弧AB的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙O自转的周数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州模拟)写出一个比-4小的无理数:
-
17
-
17

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州模拟)对某校九年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图(图1)和扇形统计图(图2).根据图中信息,这些学生的平均分数是
2.95
2.95
分.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州模拟)如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为
300π
300π
(结果用含π的式子表示).

查看答案和解析>>

同步练习册答案