精英家教网 > 初中数学 > 题目详情

作业宝如图,△ABC的内切圆分别切BC,CA、AB三边于D、E、F,M是EF上一点,且DM⊥EF,求证:DM平分∠BMC.

证明:连接DF、DE,设N、K分别是DF、DE的中点,连接BN、CK,OF,OD.则:
∵△ABC的内切圆分别切BC、CA、AB三边于D、E、F,
∴BF=BD,CD=CE,
∴BN⊥DF,CK⊥DE,∠FBN=∠FBD,
∵∠DOF=2∠E,∠DOF+∠FBD=180°,∠MDE+∠E=90°,
∴∠FBN=∠EDM,
∵DM⊥EM,
∴∠BNF=∠DME=90°,
∴Rt△BFN∽Rt△DEM,
==
同理:Rt△CEK∽Rt△DFM,==
∴BF•ME=DF•DE=CE•FM,
=,而∠BFM=∠CEM,
∴△BFM∽△CEM,
∴∠BMF=∠CME.
∵DM⊥EF,∴∠BMD=∠CMD.
即DM平分∠BMC.
分析:连接DF、DE,设N、K分别是DF、DE的中点,连接BN、CK.则Rt△BFN∽Rt△DEM,Rt△CEK∽Rt△DFM,从而证得=,于是△BFM∽△CEM,所以∠BMD=∠CMD.即DM平分∠BMC.
点评:本题考查了三角形的内切圆和相似三角形的判定和性质,熟练应用相似三角形的性质是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知:如图,△ABC内接于⊙O,AE切⊙O于点A,BD∥AE交AC的延长线于点D,求证:AB2=AC•AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC内接于⊙O1,以AC为直径的⊙O2交BC于点D,AE切⊙O1于点A,交⊙O2精英家教网点E,连接AD、CE,若AC=7,AD=3
5
,tanB=
5
2

求:(1)BC的长;
(2)CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,△ABC内切⊙O于D、E、F三点,内切圆⊙O的半径为1,∠C=60°,AB=5,则△ABC的周长为(  )
A、12
B、14
C、10+2
3
D、10+
3

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:044

己知:如图,⊙O与内切于点B,BC是⊙O的直径,BC=6,BF为的直径,BF=4,⊙O的弦BA交于点D,连接DF、AC、CD.(1)求证:DF∥AC;(2)当∠ABC等于多少度时,CD与相切?并证明你的结论.(3)在(2)的前提下,连接FA交CD于点E,求AF、EF的长.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

已知如图,⊙O的内接△ABC,AE切⊙O于A点,过C作AE的平行线交AB于D点.   
(1)求证:AC2=AB·AD.  
(2)若∠B=60°,⊙O的直径为6,求S

查看答案和解析>>

同步练习册答案