精英家教网 > 初中数学 > 题目详情
如图,规格为60cm×60cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE=45cm,现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN,
(1)设BN=x,BM=y,请用含x的代数式表示y,并写出x的取值范围;
(2)请用含x的代数式表示S,并在给定的直角坐标系内画出该函数的示意图;
(3)利用函数图象回答(2)中:当x取何值时,S有最大值?最大值是多少?

(1)延长MP交CD与点G,则EG=y-45,PG=60-x.
∵PGFD,
∴△EPG△EFD,
∴y=-
1
2
x+75(30≤x≤60);

(2)S=xy=(-
1
2
x+75)x=-
1
2
x2+75x(30≤x≤60).

图象是抛物线S=-
1
2
x2+75x的一部分,x满足30≤x≤60.

(3)∵函数S=-
1
2
x2+75x的对称轴是x=75,在对称轴的左侧函数随x的增大而增大
∵x满足30≤x≤60,
∴x=60时,S最大=2700.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如图,求抛物线的解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=
1
4
x2+1
的顶点为M,直线l过点F(0,2)且与抛物线分别相交于A、B两点.过点A、B分别作x轴的垂线,垂足分别为点C、D,连接CF、DF.
(1)如图:
①若A(-1,
5
4
),求证:AC=AF;
②若A(m,n),判断以CD为直径的圆与直线l的位置关系.并加以证明.
(2)若直线l绕点F旋转,且与x轴交于点P,PC×PD=8.求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx+c经过点(1,-4)和(-1,2).求抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
(1)求a的值;
(2)当四边形ODPQ为矩形时,求这个矩形的面积;
(3)当四边形PQBC的面积等于14时,求t的值.
(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,过O且半径为5的⊙P交x的正半轴于点M(2m,0)、交y轴的负半轴于点D,弧OBM与弧OAM关于x轴对称,其中A、B、C是过点P且垂直于x轴的直线与两弧及圆的交点.
(1)当m=4时,
①填空:B的坐标为______,C的坐标为______,D的坐标为______;
②若以B为顶点且过D的抛物线交⊙P于点E,求此抛物线的函数关系式和写出点E的坐标;
③除D点外,直线AD与②中的抛物线有无其它公共点并说明理由.
(2)是否存在实数m,使得以B、C、D、E为顶点的四边形组成菱形?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上(如图示)
(1)求该二次函数的解析式;
(2)P为线段AB上一动点(A、B两端点除外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x,求出l与x之间的函数关系式,并求出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标,并求出梯形的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-mx+m-2.
(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;
(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;
(3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点B的左边),一个动点P自A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.

查看答案和解析>>

同步练习册答案