分析 先根据角平分线的定义,得到∠ACD+∠BAC=2∠α+2∠β,再根据∠α+∠β=90°,即可得到∠ACD+∠BAC=180°,进而判定AB∥CD.
解答 证明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α (角平分线的定义).
∵AE平分∠BAC (已知),
∴∠BAC=2∠β(角的平分线的定义).
∴∠ACD+∠BAC=2∠α+2∠β(等式性质).
即∠ACD+∠BAC=2(∠α+∠β).
∵∠α+∠β=90° (已知),
∴∠ACD+∠BAC=180° (等量代换).
∴AB∥CD(同旁内角互补,两直线平行).
故答案为:角平分线的定义,2∠β,等式性质,180°,等量代换,同旁内角互补,两直线平行.
点评 本题主要考查了平行线的判定的运用,解题时注意:同旁内角互补,两直线平行.
科目:初中数学 来源: 题型:选择题
A. | 4$\sqrt{3}$ | B. | 6$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com