精英家教网 > 初中数学 > 题目详情
8、在△ABC中,已知AB=3,AC=5,AD是BC边上的中线,则AD取值范围是
1<AD<4
分析:如图,首先倍长中线AD至E,连接CE,因此可以得到△ABD≌△ECD,这样就有CE=AB,然后在△ACE中利用三角形的三边的关系即可求解.
解答:解:如图,延长AD至E,使DE=AD,连接CE,
∵AD是BC边上的中线,
∴BD=CD,
∠ADB=∠CDE,
∴△ABD≌△ECD,
∴CE=AB,
在△ACE中,AC-CE<AE<AC+CE,
而AB=3,AC=5,
∴5-3<AE<5+3,
∴2<2AD<8,
即1<AD<4.
点评:此题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是利用已知条件构造全等三角形,然后利用三角形的三边的关系解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各个内角的度数是多少?
(2)如图,将△ABC纸片沿MN折叠所得的粗实线围成的图形的面积与原△ABC的面积之比为3:4,且图中3个阴影三角形的面积之和为12cm2,则重叠部分的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•雅安)在△ABC中,已知∠A、∠B都是锐角,且sinA=
3
2
,tanB=1,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=80°,则∠B、∠C的角平分线相交所成的钝角为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述结论中,正确的有
①②④⑤
①②④⑤
.(填写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,则∠B的度数=
20°
20°

查看答案和解析>>

同步练习册答案