精英家教网 > 初中数学 > 题目详情
9.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按照要求作图:
(1)在网格图中画一个平行四边形ABCD,使得边长AB、BC分别是$\sqrt{2}$,2$\sqrt{2}$;
(2)平行四边形的周长是6$\sqrt{2}$,面积是4;
(3)∠ABC=90°.

分析 (1)每个小正方形的边长均为1,利用勾股定理得出AB=$\sqrt{2}$,BC=2$\sqrt{2}$,以它们为边作平行四边形;
(2)利用平行四边形周长公式:2(AB+BC)=2×($\sqrt{2}$$+2\sqrt{2}$)=$6\sqrt{2}$,利用面积公式得面积为:AB•BC=$\sqrt{2}$×2$\sqrt{2}$=4;
(3)根据AB为小正方形对角线,BC为正方形对角线得∠ABC=45°+45°=90°.

解答 解:(1)如图所示;

(2)周长为:2(AB+BC)=2×($\sqrt{2}$$+2\sqrt{2}$)=$6\sqrt{2}$,
面积为:AB•BC=$\sqrt{2}$×2$\sqrt{2}$=4;
故答案为:6$\sqrt{2}$,4;

(3)∠ABC=45°+45°=90°,
故答案为:90°.

点评 本题主要考查了勾股定理,作图方法,平行四边形的性质,利用勾股定理得出平行四边形边长是解决此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤$\frac{1}{3}$,且y随x的减小而减小,则k的值为$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知某函数图象如图所示,根据图象回答问题.
(1)确定自变量x的取值范围;
(2)当x取何值时函数值y最大?当x取何值时,函数值y最小?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.设1≤x≤3,则|x-1|-|x-3|的最大值与最小值的和是(  )
A.-1B.0C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,5个一样大小的长方形拼接成一个大长方形,如果大长方形的周长为14cm,那么小长方形的周长为6cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知方程组$\left\{\begin{array}{l}{x+y=m-2}\\{2x-y=m-3}\end{array}\right.$的解满足x+2y=3,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知方程组$\left\{\begin{array}{l}{ax-by=4}\\{3x-y=5}\end{array}\right.$与方程组$\left\{\begin{array}{l}{ax+by=6}\\{4x-7y=1}\end{array}\right.$的解相同,求ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.若|a-4|+(b-9)2=0,求$\frac{{a}^{2}+ab}{{b}^{2}}$$•\frac{{a}^{2}-ab}{{a}^{2}-{b}^{2}}$÷$\frac{a}{b}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒钟增加2米,到达坡底时,小球速度达到40米/秒
(1)小球的速度v与时间t之间的关系;
(2)3.5秒时小球的速度;
(3)几秒时小球的速度达到16米/秒.

查看答案和解析>>

同步练习册答案