【题目】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤ 的解集.
【答案】
(1)解:∵OB=2OA=3OD=6,
∴OB=6,OA=3,OD=2,
∵CD⊥OA,
∴DC∥OB,
∴ ,
∴ = ,
∴CD=10,
∴点C坐标(﹣2,10),B(0,6),A(3,0),
∴ 解得 ,
∴一次函数为y=﹣2x+6.
∵反比例函数y= 经过点C(﹣2,10),
∴n=﹣20,
∴反比例函数解析式为y=﹣
(2)解:由 解得 或 ,
故另一个交点坐标为(5,﹣4)
(3)解:由图象可知kx+b≤ 的解集:﹣2≤x<0或x≥5
【解析】(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.
科目:初中数学 来源: 题型:
【题目】综合题
(1)探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数 的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a , b).
①若 ,请用含n的代数式表示 ;
②求证: ;
(2)应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数 的图象交于点C,D两点(点C在点D的左边),已知 ,△OBD的面积为1,试用含m的代数式表示k.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大
C.数据3、5、4、1、﹣2的中位数是3
D.某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=4,∠BAC=30°,AC交⊙O于D,D是AC的中点.
(1)过点D作DE⊥BC,垂足为E,求证:直线DE是⊙O的切线;
(2)求 与线段DE、BE围成的阴影面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (m<0)的顶点为A,交y轴于点C.
(1)求出点A的坐标(用含m的式子表示);
(2)平移直线y=x经过点A交抛物线C于另一点B,直线AB下方抛物线C上一点P,求点P到直线AB的最大距离
(3)设直线AC交x轴于点D,直线AC关于x轴对称的直线交抛物线C于E、F两点.若∠ECF=90°,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B区域面积是A区域面积的2倍.设A区域面积为x(m2).
(1)求该园圃栽种的花卉总株数y关于x的函数表达式.
(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?
(3)若三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元.请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按照有关规定:距高铁轨道 200米以内的区域内不宜临路新建学校、医院、敬老院和集中住宅区等噪声敏感建筑物.
如图是一个小区平面示意图,矩形ABEF为一新建小区,直线MN为高铁轨道,C、D是直线MN上的两点,点C、A、B在一直线上,且DA⊥CA,∠ACD=30°.小王看中了①号楼A单元的一套住宅,与售楼人员的对话如下:
(1)小王心中一算,发现售楼人员的话不可信,请你用所学的数学知识说明理由;
(2)若一列长度为228米的高铁以252千米/小时的速度通过时,则A单元用户受到影响时间有多长?
(温馨提示: ≈1.4, ≈1.7, ≈6.1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com