精英家教网 > 初中数学 > 题目详情
14.利用二次函数y=-x2+2x-3的图象,求方程-x2+2x-3=-8的近似解.

分析 根据二次函数y=-x2+2x-3的图象与直线y=-8的交点的横坐标是相应的一元二次方程-x2+2x-3=-8的解,即可求得.

解答 解:画出函数y=-x2+2x-3和直线y=-8的图象如图,

它们的交点坐标是(-1.4,0)(3.4,0)
方程-x2+2x-3=-8的近似解是x=-1.4,x=3.4.

点评 本题考查了图象法求一元二次方程的近似根,二次函数y=-x2+2x-3的图象与直线y=-8的交点的横坐标是相应的一元二次方程的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.计算:-12-[1$\frac{3}{7}$+(-12)÷6]2×(-1$\frac{3}{4}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,图(1)是一个扇形AOB,将其作如下划分:第一次划分:如图(2)所示,得到扇形的总数为6个,分别为:扇形AOB、扇形AOC、扇形COB、扇形A1OB1、扇形A1OC1、扇形C1OB;第二次划分:如图(3)所示,在扇形C1OB1中,按上述划分方式继续划分,可以得到扇形的总数为11个;第三次划分:如图(4)所示;
依次划分下

(1)根据题意,完成表格
 划分次数 扇形总个数
 1 6
 2 11
 316 
 421
 n5n+1
(2)请判断,按上述方式继续划分,能否得到扇形的总数为2000个?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知正五边形ABCDE与正五边形A′B′C′D′E′相似,且相似比为1:3,如果正五边形ABCDE的周长为14cm,则正五边形A′B′C′D′E′的周长为42 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当销售单价定为多少元时,可获得最大利润?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得不少于2250元的销售利润,当销售单价定为多少元时,可使销售成本最少?最少多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知,如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.
(1)根据题目所提供的信息,可求得b=4,a=5,m=9;
(2)连结AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值.
(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值,并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,直接写出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先阅读材料,然后解答问题,计算发现
x+$\frac{1}{x}$=2+$\frac{1}{2}$的解为x1=2,x2=$\frac{1}{2}$,
x+$\frac{1}{x}$=3+$\frac{1}{3}$的解为x1=3,x2=$\frac{1}{3}$,
x+$\frac{1}{x}$=4+$\frac{1}{4}$的解为x1=4,x2=$\frac{1}{4}$,

(1)观察上述解的情况猜想关于x的方程x+$\frac{1}{x}$=11+$\frac{1}{11}$的解是x1=11,x2=$\frac{1}{11}$.
(2)根据上面规律,猜想关于x的方程x+$\frac{1}{x}$=n+$\frac{1}{n}$的解是x1=n,x2=$\frac{1}{n}$.
(3)类似的关于x的方程x-$\frac{1}{x}$=m-$\frac{1}{m}$的解是x1=-m,x2=$\frac{1}{m}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若点(x1,y1),点(x2,y2)在抛物线y=-$\frac{2}{3}$x2上,且x1<x2<0,则y1与y2的大小关系是y1<y2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.产量由m千克增长15%后,达到1.15m千克.

查看答案和解析>>

同步练习册答案