精英家教网 > 初中数学 > 题目详情
4.如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.
(1)判断△CED的形状,并说明理由;
(2)若OC=3,求CD的长.

分析 (1)△CED为等边三角形,理由如下:由OC为角平分线及∠AOB度数求出∠AOC与∠COE度数,再由CE与OA平行,得到一对内错角相等,再由CD与OC垂直,求出∠ECD度数,利用三个内角相等的三角形为等边三角形即可得证;
(2)由△CED为等边三角形,得到三边相等,利用等角对等边得到OE=CE,进而得到OE=CE=DE,设CD=x,利用30度角所对的直角边等于斜边的一半得到OD=2x,再由OC的长,利用勾股定理列出方程,求出方程的解得到x的值,即可确定出CD的长.

解答 解:(1)△CED是等边三角形,理由如下:
∵OC平分∠AOB,∠AOB=60°,
∴∠AOC=∠COE=30°,
∵CE∥OA,
∴∠AOC=∠COE=∠OCE=30°,∠CED=60°,
∵CD⊥OC,
∴∠OCD=90°,
∴∠EDC=60°,
∴△CED是等边三角形;                                             

(2)∵△CED是等边三角形,
∴CD=CE=ED,
又∵∠COE=∠OCE,
∴OE=EC,
∴CD=ED=OE,
设CD=x,则OD=2x,
在Rt△OCD中,根据勾股定理得:x2+9=4x2
解得:x=$\sqrt{3}$,
则CD=$\sqrt{3}$.

点评 此题考查了等边三角形的判定与性质,勾股定理,平行线的性质,含30度直角三角形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.设$\overline{x}$是x1,x2,x3,…,xn的平均数,$\overline{y}$是3x1+4,3x2+4,3x3+4,…,3xn+4的平均数,则$\overline{x}$与$\overline{y}$之间有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合).设AB=a,AD=b,BE=x.用剪刀将纸片沿直线EF剪开后,将纸片ABEF沿AB翻折,再平移拼接在梯形ECDF的下方,那么能否做到纸片ABEF的一边与EC重合,另一边落在DC的延长线上,能(用“能”或“不能”填空).若填“能”,我们把拼接后在下方的四边形记作ECB′E′,当$\frac{x}{b}$的值为$\frac{2}{3}$或$\frac{1}{3}$时,直线E′E经过原矩形的一个顶点,若填“不能”,请说明理由:不能.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; 
B方法:剪4个侧面和5个底面.
现有38张硬纸板,裁剪时x张用A方法,其余用B方法.
(1)用x的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在梯形ABCD中,AD∥BC,AC、BD相交于O,如果△BOC、△ACD的面积分别是9和4,那么梯形ABCD的面积是16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系中,O坐标系原点,抛物线y=ax2-2ax+b交x轴负半轴与点A,交x轴正半轴于点B,抛物线的顶点为C,其纵坐标为-2,AB=4.
(1)如图1,求a、b的值;
(2)如图2,点D在CA的延长线上,点E在射线AB上,连接DE,将DE绕点E顺时针旋转90°得到线段EF,当点F落在抛物线上时,求点F的坐标;
(3)如图3,在(2)的条件下,过E作EG‖y轴,交DF于点G,点H 在第二象限直线DF上方的抛物线上,连接DH,当DG=2GF,∠HDF=2∠DEA时,求点H的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知线段a,h(a>h),求作等腰三角形ABC,使AB=AC=a,底边BC上的高AD=h(保留作图痕迹,不要求写出作法).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.己知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系:
(1)下面图形中,若AB∥CD,BE∥DF,∠1=60°,那么,在图①中,∠2=60°;在图②中,∠2=120°;
(2)利用(1)的结果,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;
(3)已知两个角的两边分别平行,且一个角比另一个角的3倍少20°,则这两个角分别是多少度?

查看答案和解析>>

同步练习册答案